[1] 李国竣, 徐延海, 段杰文, 等.利用局部自适应阈值方法提取ORB-SLAM特征点[J].测绘通报, 2021(9):32-36. [2] 盛超, 潘树国, 赵涛, 等.基于图像语义分割的动态场景下的单目SLAM算法[J].测绘通报, 2020(1):40-44. [3] NICHOLSON L, MILFORD M, SVNDERHAUF N.QuadricSLAM:dual quadrics from object detections as landmarks in object-oriented SLAM[J].IEEE Robotics and Automation Letters, 2019, 4(1):1-8. [4] MOLLOY T L, FISCHER T, MILFORD M, et al.Intelligent reference curation for visual place recognition via Bayesian selective fusion[J].IEEE Robotics and Automation Letters, 2021, 6(2):588-595. [5] CHEN Zetao, LIU Lingqiao, SA I, et al.Learning context flexible attention model for long-term visual place recognition[J].IEEE Robotics and Automation Letters, 2018, 3(4):4015-4022. [6] FISCHER T, MILFORD M.Event-based visual place recognition with ensembles of temporal windows[J].IEEE Robotics and Automation Letters, 2020, 5(4):6924-6931. [7] 刘强, 段富海, 桑勇, 等.复杂环境下视觉SLAM闭环检测方法综述[J].机器人, 2019, 41(1):112-123. [8] NG P C, HENIKOFF S.SIFT:predicting amino acid changes that affect protein function[J].Nucleic Acids Research, 2003, 31(13):3812-3814. [9] BAY H, ESS A, TUYTELAARS T, et al.Speeded-up robust features (SURF)[J].Computer Vision and Image Understanding, 2008, 110(3):346-359. [10] 张良桥, 陈国良, 许晓东, 等.一种用于图像特征提取的改进ORB-SLAM算法[J].测绘通报, 2019(3):16-20. [11] 刘国忠, 胡钊政.基于SURF和ORB全局特征的快速闭环检测[J].机器人, 2017, 39(1):36-45. [12] 张云洲, 胡航, 秦操, 等.基于栈式卷积自编码的视觉SLAM闭环检测[J].控制与决策, 2019, 34(5):981-988. [13] 龚希, 吴亮, 谢忠, 等.融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J].光学学报, 2019, 39(3):19-29. [14] 牛杰, 卜雄洙, 钱堃, 等.一种融合全局及显著性区域特征的室内场景识别方法[J].机器人, 2015, 37(1):122-128. [15] CHEN Z, LAM O, JACOBSON A, et al.Convolutional neural network-based place recognition[C]//Proceedings of 2014 Conference on Robotics and Automati-on.Melbourne:[s.n.], 2014. [16] KHALIQ A, EHSAN S, CHEN Zetao, et al.A holistic visual place recognition approach using lightweight CNNs for significant ViewPoint and appearance changes[J].IEEE Transactions on Robotics, 2020, 36(2):561-569. [17] MCMANUS C, UPCROFT B, NEWMANN P.Scene signatures:localised and point-less features for localisation[C]//Proceedings of Conference on Robotics:Science and Systems.[S.l.]:Science and Systems Foundation, 2014. [18] CHEN Zetao, JACOBSON A, SVNDERHAUF N, et al.Deep learning features at scale for visual place recognition[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation.Singapore:IEEE, 2017:3223-3230. [19] ARANDJELOVIĆ R, GRONAT P, TORII A, et al.NetVLAD:CNN architecture for weakly supervised place recognition[C]//Proceedings of 2016 IEEE Transactions on Pattern Analysis and Machine Intelligence.[S.l.]:IEEE, 2016:1437-1451. [20] CHEN Zetao, MAFFRA F, SA I, et al.Only look once, mining distinctive landmarks from ConvNet for visual place recognition[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Vancouver, BC, Canada:IEEE, 2017:9-16. [21] SHEKHAR R, JAWAHAR C V.Word image retrieval using bag of visual words[C]//Proceedings of the 10th IAPR International Workshop on Document Analysis Systems.Gold Coast, QLD, Australia:IEEE, 2012:297-301. [22] ZAFFAR M, EHSAN S, MILFORD M, et al.CoHOG:a light-weight, compute-efficient, and training-free visual place recognition technique for changing environments[J].IEEE Robotics and Automation Letters, 2020, 5(2):1835-1842. [23] HANBAY K, ALPASLAN N, TALU M F, et al.Continuous rotation invariant features for gradient-based texture classification[J].Computer Vision and Image Understanding, 2015, 132:87-101. [24] GUCLU O, CAN A B.Histogram based visual place recognition for improving SLAM performance[C]//Proceedings of 2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC).Bragança, Portugal:IEEE, 2016:174-180. [25] PAZ L M, PINIÉS P, TARDÓS J D, et al.Large-scale 6-DOF SLAM with stereo-in-hand[J].IEEE Transactions on Robotics, 2008, 24(5):946-957. [26] SCARAMUZZA D, FRAUNDORFER F.Visual odometry tutorial[J].IEEE Robotics & Automation Magazine, 2011, 18(4):80-92. |