测绘通报 ›› 2023, Vol. 0 ›› Issue (7): 32-38.doi: 10.13474/j.cnki.11-2246.2023.0197

• 学术研究 • 上一篇    下一篇

InSAR观测约束2022年门源Mw 6.7级地震同震滑动分布和库伦应力变化

王欣1, 李水平1,2,3, 康晶4   

  1. 1. 合肥工业大学土木与水利工程学院, 安徽 合肥 230009;
    2. 武汉引力与固体潮国家野外科学观测 研究站, 湖北 武汉 430071;
    3. 中国地质大学(武汉)地球物理与空间信息学院, 湖北 武汉 430074;
    4. 合肥市测绘设计研究院有限公司, 安徽 合肥 230001
  • 收稿日期:2022-08-29 出版日期:2023-07-25 发布日期:2023-08-08
  • 通讯作者: 李水平。E-mail:lishuiping@hfut.edu.cn
  • 作者简介:王欣(1998-),男,硕士生,研究方向为InSAR数据处理及地壳形变。E-mail:1908561903@qq.com
  • 基金资助:
    国家自然科学基金(42004001);武汉引力与固体潮国家野外科学观测研究站开放研究基金(WHYWZ202107);地球内部多尺度成像湖北省重点实验室开放基金(SMIL-2021-04);中央高校基本科研业务费专项(JZ 2022HGTB0268)

InSAR observations constrained coseismic slip distribution and Coulomb stress variation of Mw 6.7 Menyuan earthquake in 2022

WANG Xin1, LI Shuiping1,2,3, KANG Jing4   

  1. 1. College of Civil Engineering, Hefei University of Technology, Hefei 230009, China;
    2. Wuhan National Field Observation and Research Station for Gravity and Solid Tides, Wuhan 430071, China;
    3. Institute of Geophysics & Geomatics, China University of Geosciences, Wuhan 430074, China;
    4. Hefei Surveying and Mapping Design and Research Institute Co., Ltd., Hefei 230001, China
  • Received:2022-08-29 Online:2023-07-25 Published:2023-08-08

摘要: 本文首先基于Sentinel-1A卫星升降轨影像数据,利用合成孔径雷达差分干涉(DInSAR)技术,获取2022年1月8日青海门源Mw 6.7级地震的视线向(LOS)同震形变场;然后根据非负最小二乘原理,反演发震断层几何参数和同震滑动分布;最后基于断层滑动分布参数和库伦破裂准则,计算库伦应力变化。结果表明,门源地震造成显著的地表变形,同震形变区范围约为33 km×22 km,升降轨最大LOS向形变量分别为-60、85 cm。同震滑动模型显示,门源地震是一次以左旋走滑为主、兼少许逆冲的地震事件,并在地表造成长约36 km(主断层24 km,分支断层12 km)的同震破裂,主要破裂区集中在0~15 km的深度,主断层最大滑动量为2.94 m,对应深度为1.5 km,分支断层最大滑动量为1.43 m,对应深度为4.5 km;反演释放的地震矩为1.37×1019 N·m,相当于一次Mw 6.73级地震;结合野外考察与断层反演结果,初步判定同震发震断层为冷龙岭断裂西端,并破裂到托莱山断裂东端。同震库伦应力变化及余震分布结果表明,冷龙岭断裂东端和托莱山断裂西端库伦应力明显处于加载状态,未来发生强震的危险性较大。

关键词: 门源地震, 同震形变, DInSAR, 滑动分布, 库伦应力变化

Abstract: In this paper, the line-of-sight (LOS) co-seismic deformation field of the Mw 6.7 Menyuan earthquake in Qinghai province on January 8, 2022 is obtained by using synthetic aperture radar differential interferometry (DInSAR) technology based on the Sentinel-1A satellite ascending and descending data. The non-negative least squares principle is used to retrieve the geometric parameters and co-seismic slip distribution of seismogenic faults. Finally, the Coulomb stress variation is calculated based on the fault slip distribution parameters and Coulomb fracture criterion. The results show that the Menyuan earthquake caused significant surface deformation, the coseismic deformation area is about 33 km×22 km, and the maximum LOS shape variables of ascending and descending data are -60 and 85 cm, respectively. Co-seismic sliding model display, the Menyuan earthquake is a left-lateral strike-slip event with a little thrust, and caused a co-seismic rupture about 36 km long (24 km for the main fault and 12 km for the branch fault) on the surface. The main rupture area is concentrated in 0~15 km depth, and the maximum slip of the main fault is 2.94 m, corresponding to 1.5 km depth.The maximum slip of the branch fault is 1.43 m, corresponding to 4.5 km depth. The seismic moment releases by inversion is 1.37×1019 N·m, which is equivalent to a Mw 6.73 earthquake. Based on the results of field investigation and fault inversion, it is preliminarily determined that the co-seismogenic fault is the west end of Lenglongling fault and ruptures to the east end of Tuoleshan fault. The results of coseismic Coulomb stress variation and aftershock distribution show that the Coulomb stress at the east end of Lenglongling fault and the west end of Tuoleshan fault are obviously under loading condition, and the risk of strong earthquakes in the future is high.

Key words: Menyuan earthquake, co-seismic deformation, DInSAR, sliding distribution, Coulomb stress variation

中图分类号: