测绘通报 ›› 2024, Vol. 0 ›› Issue (2): 1-7.doi: 10.13474/j.cnki.11-2246.2024.0201

• 全球地表覆盖时空变化研究和应用 •    下一篇

融合作物类型的土壤盐分遥感反演方法研究

张胜男1, 陆苗1, 温彩运1, 宋英强2, 康璐1, 沈军辉3, 杨民志3   

  1. 1. 北方干旱半干旱耕地高效利用全国重点实验室(中国农业科学院农业资源与农业区划研究所), 北京 100081;
    2. 山东理工大学建筑工程与空间信息学院, 山东 淄博 255000;
    3. 东营市垦利区农业 发展服务中心, 山东 东营 257500
  • 收稿日期:2023-10-16 发布日期:2024-03-12
  • 通讯作者: 陆苗。E-mail:lumiao@caas.cn
  • 作者简介:张胜男(2000—),女,硕士,研究方向为土壤遥感。E-mail:82101212293@caas.cn
  • 基金资助:
    国家重点研发计划(2023YFD200140101);国家自然科学基金(42071419);中国农业科学院科技创新工程(CAAS-ZDRW202201)

Study of soil salinity remote sensing inversion method integrating crop type

ZHANG Shengnan1, LU Miao1, WEN Caiyun1, SONG Yingqiang2, KANG Lu1, SHEN Junhui3, YANG Minzhi3   

  1. 1. State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China(the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing 100081, China;
    2. School of Civil and Architectural Fengineering, Shangdong University of Technology, Zibo 255000, China;
    3. Agricultural Development Service Center of Kenli District, Dongying 257500, China
  • Received:2023-10-16 Published:2024-03-12

摘要: 在沿海平原地区,土壤盐度是制约作物生长的非生物胁迫之一,也是作物种植的重要依据,作物类型能够间接反映土壤盐渍化程度,因此本文提出了一种融合作物类型信息的土壤盐分反演方法。以黄河三角洲典型滨海盐渍土地区为例,基于Sentinel-2 MSI影像,首先采用随机森林分类提取作物类型信息,并基于OneHot方式将作物类型信息编码;然后融合作物类型信息,结合环境协变量数据、地面实测盐分数据,采用自适应增强决策树模型(AB-DT)进行盐分反演;最后与其他机器学习方法,如支持向量机、随机森林、K最邻近和决策树进行盐分反演精度的对比。结果表明:①加入作物类型信息能够提高土壤盐分反演模型精度,所有模型中,融合作物类型变量的AB-DT反演模型精度最高,建模集R2为0.86,测试集R2为0.61; ②加入作物类型信息能够修正误判的盐渍土级别,并使土壤盐分反演结果的地块边缘更加清晰。综上所述,加入作物类型信息,能够提高土壤盐分反演的准确性,为农田管理和农业决策提供更可靠的依据。

关键词: 土壤盐渍化, 多光谱遥感反演, 机器学习

Abstract: In coastal plain regions, soil salinity serves as one of the abiotic stressors limiting crop growth. The content of soil salinity is a critical determinant for crop cultivation. The variety of crops grown can indirectly indicate the extent of soil salinization. Therefore, this paper proposes an integrated approach for the inversion of soil salinity, incorporating crop type information. Based on Sentinel-2 MSI imagery in a typical coastal saline soil area in the Yellow River Delta. Firstly, crop type information was extracted using random forest classification and coded based on the OneHot method. Then, by integrating crop type information, environmental covariate data, and ground-measured salinity data, the adaptive boosting decision tree (AB-DT) model is applied for soil salinity estimation. Finally, the accuracy of salinity estimation is compared with other machine learning methods, including support vector machines, random forests, K-nearest neighbors, and decision trees. The results indicated that ①Incorporating crop type information enhances the accuracy of soil salinity estimation models. Among all models, the AB-DT model with fused crop type variables achieves the highest modeling set R2 of 0.86 and validation set R2of 0.61.②The inclusion of crop type information enable to correct misclassifications of salinity levels and yield sharper boundaries in soil salinity estimation results. In conclusion, the incorporation of crop type information improves the accuracy of soil salinity estimation, providing a more reliable basis for agricultural management and decision-making.

Key words: soil salinization, multi-spectral remote sensing estimation, machine learning

中图分类号: