[1] 高华喜.滑坡灾害风险区划与预测研究综述[J].灾害学, 2010, 25(2):124-128. [2] 自然资源部地质勘查管理司.2021年7月全国地质灾害灾情及8月趋势预测[R].自然资源部地质勘查管理司, 中华人民共和国自然资源部:自然资源部地质勘查管理司, 2021. [3] 单鹏飞.宁夏西吉地区滑坡灾害地貌的成因分析[J].地理学报, 1996, 51(6):535-542. [4] 叶铃.海原大地震诱发黄土滑坡分布规律及运动特征研究[D].成都:成都理工大学, 2013. [5] KAYASTHA P, DHITAL M R, DE SMEDT F.Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping:a case study from the Tinau watershed, west Nepal[J].Computers & Geosciences, 2013, 52:398-408. [6] MANDAL B, MANDAL S.Analytical hierarchy process (AHP) based landslide susceptibility mapping of Lish River Basin of eastern Darjeeling Himalaya, India[J].Advances in Space Research, 2018, 62(11):3114-3132. [7] AKGUN A, DAG S, BULUT F.Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models[J].Environmental Geology, 2008, 54(6):1127-1143. [8] 马彦彬, 李红蕊, 王林, 等.机器学习方法在滑坡易发性评价中的应用[J].土木与环境工程学报(中英文), 2022(1):53-67. [9] CHEN Wei, XIE Xiaoshen, PENG Jianbing, et al.GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method[J].CATENA, 2018, 164:135-149. [10] 刘渊博, 牛瑞卿, 于宪煜, 等.旋转森林模型在滑坡易发性评价中的应用研究[J].武汉大学学报(信息科学版), 2018, 43(6):959-964. [11] FEI-FEI L, PERONA P.A Bayesian hierarchical model for learning natural scene categories[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:IEEE, 2005:524-531. [12] TSANGARATOS P, ILIA I.Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments:the influence of models complexity and training dataset size[J].CATENA, 2016, 145:164-179. [13] WANG Liangjie, GUO Min, SAWADA K, et al.A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network[J].Geosciences Journal, 2016, 20(1):117-136. [14] BUI D T, TUAN T A, KLEMPE H, et al.Spatial prediction models for shallow landslide hazards:a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree[J].Landslides, 2016, 13(2):361-378. [15] PENG Ling, NIU Ruiqing, HUANG Bo, et al.Landslide susceptibility mapping based on rough set theory and support vector machines:a case of the Three Gorges area, China[J].Geomorphology, 2014, 204:287-301. [16] YI Yaning, ZHANG Zhijie, ZHANG Wanchang, et al.Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network:a case study in Jiuzhaigou region[J].CATENA, 2020, 195:104851. [17] TIAN Yingying, XU Chong, HONG Haoyuan, et al.Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models:an example of the 2013 Minxian (China) Mw 5.9 event[J].Geomatics, Natural Hazards and Risk, 2019, 10(1):1-25. [18] 孙德亮.基于机器学习的滑坡易发性区划与降雨诱发滑坡预报预警研究[D].上海:华东师范大学, 2019. [19] STUMPF A, KERLE N.Object-oriented mapping of landslides using random forests[J].Remote Sensing of Environment, 2011, 115(10):2564-2577. [20] ZHOU Zhihua, FENG Ji.Deep forest[J].National Science Review, 2018, 6(1):74-86. [21] 贾杰.高烈度山区强震黄土滑坡灾害危险性评价[D].成都:成都理工大学, 2016. |