[1] 陈锡文.切实保障国家食物供给安全[J].农业经济问题, 2021, 42(6): 4-7. [2] 王静怡,李晓明.近20年中国耕地数量变化趋势及其驱动因子分析[J].中国农业资源与区划, 2019, 40(8): 171-176. [3] JIN Yuhao,LIU Xiaoping,YAO Jing,et al.Mapping the annual dynamics of cultivated land in typical area of the Middle-Lower Yangtze Plain using long time-series of Landsat images based on Google Earth Engine[J].International Journal of Remote Sensing,2020,41(4): 1625-1644. [4] DUBE T,GUMINDOGA W,CHAWIRA M.Detection of land cover changes around Lake Mutirikwi,Zimbabwe,based on traditional remote sensing image classification techniques[J].African Journal of Aquatic Science,2014,39(1): 89-95. [5] GRAESSER J,RAMANKUTTY N.Detection of cropland field parcels from Landsat imagery[J].Remote Sensing of Environment,2017,201: 165-180. [6] 韩春雷,沈彦俊,武兰珍,等.基于时序MODIS的黄河上游2002—2018年耕地时空变化特征分析[J].中国生态农业学报(中英文),2021,29(11):1940-1951. [7] 苏锐清,曹银贵,王文旭,等.京津冀潮白河区域2001—2017年耕地利用变化时空特征分析[J].农业资源与环境学报,2020,37(4): 574-582. [8] 项铭涛,吴文斌,胡琼,等.2000—2010年欧洲耕地时空格局变化分析[J].中国农业科学,2018,51(6): 1121-1133. [9] 眭海刚,王建勋,华丽,等.遥感耕地监测现状与方法综述[J].广西科学,2022,29(1): 1-12. [10] 冯婧珂.桂林市2000—2020年土地利用时空变化及其驱动力分析[J].中国资源综合利用,2022,40(12): 101-106. [11] LAN Yanping,CHEN Jianjun,YANG Yanping,et al.Landscape pattern and ecological risk assessment in Guilin based on land use change[J].International Journal of Environmental Research and Public Health,2023,20(3): 2045. [12] 姜展鹏,包安明,李艳红.基于GeoSOS-FLUS模型的乌鲁木齐主城区扩张情景模拟分析[J].遥感技术与应用,2023,38(2): 332-340. [13] 李何英,何文,王金叶,等.基于PLSR-FLUS-MarKov模型的生态系统服务价值多情景预测——以漓江流域为例[J/OL].水生态学杂志:1-14[2023-08-30].https://doi.org/10.15928/j.1674-3075.202211210468. [14] CHEN Xin,HE Xinyi,WANG Siyuan.Simulated validation and prediction of land use under multiple scenarios in Daxing district,Beijing,China,based on GeoSOS-FLUS model[J].Sustainability,2022,14(18): 11428. [15] 杨子生,杨诗琴,杨人懿,等.基于利用视角的土地资源分类方法探讨[J].资源科学,2021,43(11): 2173-2191. [16] PATIL M B,DESAI C G,UMRIKAR B N.Image classification tool for land use/land cover analysis: a comparative study of maximum likelihood and minimum distance method[J].International Journal of Geology,Earth and Environmental Sciences,2012,2(3):189-196. [17] RODRIGUEZ-GALIANO V F,GHIMIRE B,ROGAN J,et al.An assessment of the effectiveness of a random forest classifier for land-cover classification[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,67: 93-104. [18] HUANG C,DAVIS L S,TOWNSHEND J R G.An assessment of support vector machines for land cover classification[J].International Journal of Remote Sensing,2002,23(4): 725-749. [19] GEORGANOS S,GRIPPA T,VANHUYSSE S,et al.Very high resolution object-based land use-land cover urban classification using extreme gradient boosting[J].IEEE Geoscience and Remote Sensing Letters,2018,15(4): 607-611. [20] ERBEK F S,ÖZKAN C,TABERNER M.Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities[J].International Journal of Remote Sensing,2004,25(9): 1733-1748. [21] LIU Xiaoping,LIANG Xun,LI Xia,et al.A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J].Landscape and Urban Planning,2017,168: 94-116. [22] 张凯琪,陈建军,侯建坤,等.耦合InVEST与GeoSOS-FLUS模型的桂林市碳储量可持续发展研究[J].中国环境科学,2022,42(6): 2799-2809. [23] WANG Yuncai,SHEN Jiake,YAN Wentao,et al.Backcasting approach with multi-scenario simulation for assessing effects of land use policy using GeoSOS-FLUS software[J].MethodsX,2019,6: 1384-1397. |