测绘通报 ›› 2024, Vol. 0 ›› Issue (5): 35-40.doi: 10.13474/j.cnki.11-2246.2024.0507

• 学术研究 • 上一篇    

基于GeoSOS-FLUS模型的桂林市耕地变化趋势

倪春雨1,2, 何文1,3, 姚月锋1,2,3   

  1. 1. 广西壮族自治区中国科学院广西植物研究所, 广西 桂林 541006;
    2. 桂林理工大学测绘地理信息 学院, 广西 桂林 541006;
    3. 广西喀斯特植物保育与恢复生态学重点实验室, 广西 桂林 541006
  • 收稿日期:2023-09-13 发布日期:2024-06-12
  • 通讯作者: 姚月锋。E-mail:yf.yao@gxib.cn
  • 作者简介:倪春雨(1999—),男,硕士生,研究方向为环境遥感。E-mail:1540152853@qq.com
  • 基金资助:
    广西重点研发计划(桂科AB22035060);国家自然科学基金(32060369);广西喀斯特植物保育与恢复生态学重点实验室项目(22-035-26)

Assessment of cultivated land use change in Guilin using the GeoSOS-FLUS model

NI Chunyu1,2, HE Wen1,3, YAO Yuefeng1,2,3   

  1. 1. Guangxi Institute of Botany, Guangxi Zhuang Autonomous Regions and Chinese Academy of Sciences, Guilin 541006, China;
    2. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China;
    3. Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guilin 541006, China
  • Received:2023-09-13 Published:2024-06-12

摘要: 为探讨桂林市耕地时空变化格局、促进土地资源合理配置,本文基于Google Earth Engine(GEE)云平台,以多时相的Landsat遥感影像为数据源,综合比较5种分类方法在桂林市土地利用分类中的适用性;分析了桂林市2000—2020年土地利用变化,尤其是耕地时空变化格局;并利用GeoSOS-FLUS模型模拟预测在自然发展、耕地保护和生态控制等不同情景下,2030年桂林市耕地时空变化趋势。结果表明:①随机森林算法对桂林市土地利用类型提取的总体精度及Kappa系数均最高;②2000—2020年耕地面积逐年减少,其中2010—2015年流失情况最为严重,耕地主要表现为与建设用地和林地的相互转化,退耕还林、旅游业快速发展及建设用地扩张等是影响耕地时空变化格局的关键因素;③自然发展情景下,耕地面积将继续大幅减少,建设用地扩张和耕地减少将对生态环境产生一定影响。耕地保护和生态控制情景中,耕地面积将有所上升,其减少趋势有所缓解,对维护桂林市粮食安全、旅游业持续发展及生态系统的稳定性具有重要意义。

关键词: 耕地变化, 土地利用分类, Google Earth Engine, 情景模拟, 桂林市

Abstract: Information of spatiotemporal change in cultivated land and its future trends is an essential component for effective land use management. Here, we explore the spatiotemporal change pattern of cultivated land in Guilin with multi-temporal Landsat remote sensing images based on the Google Earth Engine (GEE) cloud platform. Firstly, we comprehensively evaluate five classification methods for their suitability in classifying land use in Guilin. Secondly, we analyze the land use changes, especially the spatiotemporal change pattern of cultivated land from 2000 to 2020. Furthermore, we simulate and predict change in cultivated land under different scenarios in 2030 using the GeoSOS-FLUS model. The results show that the random forest (RF) algorithm demonstrate the highest overall accuracy and Kappa coefficient for land use classification in Guilin. There was a continuous decrease in cultivated land area during 2000 to 2020, with the most pronounced decline observed between 2010 and 2015. Cultivated land was mainly converted to construction land and forests.The Grain for Green Program, the rapid expansion of tourism, and an increase in construction land are the key factors that impact the spatiotemporal change patterns of cultivated land.Under the natural development scenario, it is anticipated that the cultivated land will continue to decrease significantly, while construction land will expanse in 2030. This will have adverse impacts on the ecological environment.Under both the cultivated land protection and ecological control scenarios, an increase in cultivated land area is anticipated. Increase in cultivated land and optimization other land use types will have significant importance for safeguarding food security, promoting the sustainable development of tourism, and ensuring ecosystem stability in Guilin.

Key words: changes in cultivated land, land use classification, Google Earth Engine, scenario simulation, Guilin

中图分类号: