测绘通报 ›› 2024, Vol. 0 ›› Issue (5): 121-126.doi: 10.13474/j.cnki.11-2246.2024.0521

• 技术交流 • 上一篇    

基于多数据源的采煤沉陷区早期识别及地面形变特征监测——以神木市大柳塔镇为例

曾光1, 张鹏飞2, 王海恒3, 王耀2   

  1. 1. 中国煤炭地质总局航测遥感局, 陕西 西安 710199;
    2. 榆林市自然资源和规划局, 陕西 榆林 719000;
    3. 自然资源部第一地理信息制图院, 陕西 西安 710054
  • 收稿日期:2023-10-12 发布日期:2024-06-12
  • 作者简介:曾光(1982—),男,硕士,高级工程师,从事遥感和GIS应用方向相关研究工作。E-mail:27948635@qq.com
  • 基金资助:
    榆林市采煤沉陷区煤层火烧区隐患风险大核查

Monitoring of early identification and ground deformation characteristics of coal mining subsidence area based on multi-data source:taking Daliuta Town of Shenmu city as an example

ZENG Guang1, ZHANG Pengfei2, WANG Haiheng3, WANG Yao2   

  1. 1. Aerial Photogrammetry and Remote Sensing Bureau of China National Administration of Coal Geology, Xi'an 710199, China;
    2. Yulin Bureau of Natural Resources and Planning, Yulin 719000, China;
    3. The First Institute of Geographic Information Cartography, Ministry of Natural Resources, Xi'an 710054, China
  • Received:2023-10-12 Published:2024-06-12

摘要: 煤矿区生态环境问题受到社会的广泛关注,如何实现采煤沉陷区精准、高效、经济的早期识别和动态监测显得尤为迫切。本文在资料收集与整理分析的基础上,利用2000—2022年5期DEM数据进行差分解算,同时利用2015年6月15日至2023年7月15日共计164期长时间序列Sentinel-1数据,对煤矿区地面沉降进行动态监测,查明了神木市大柳塔镇采煤沉陷区现状分布与地面沉降特征,形成了一套基于多数据源的采煤沉陷区早期识别方法。研究结果表明:①大柳塔镇采煤沉陷区分布面积为252.70km2,包括地面塌陷、采空区悬顶两种类型,神华公司石圪台、哈拉沟、大柳塔、活鸡兔4大矿区煤矿塌陷问题严重;②将分辨率为2m的DEM数据重采样为5m后进行差值运算,误差为0.01m,精度较高且计算高效;③DEM差分解算、SBAS-InSAR技术均能对地面塌陷范围进行精准识别,匹配度高,且各方法间互为补充,相互印证。

关键词: DEM差值解算, SBAS-InSAR技术, 采煤沉陷区, 大柳塔镇

Abstract: The ecological environment problems in coal mining areas have been paid more and more attention by the society. How to realize the accurate, efficient and economical early identification and dynamic monitoring of coal mining subsidence areas is particularly urgent. Based on the data collection and analysis, this paper uses the DEM data of 5 periods from 2000 to 2022 for differential decomposition calculation, and uses 164 long-term series Sentinel-1 data from June 15,2015 to July 15,2023 to dynamically monitor the land subsidence in the coal mining area. The current distribution and land subsidence characteristics of the coal mining subsidence area in Daliuta town, Shenmu city are identified, and a set of early identification methods of coal mining subsidence area based on multi-data sources is formed. The results show that:①The distribution area of coal mining subsidence area in Daliuta town is 252.70km2, including two types of ground collapse and goaf suspended roof. The coal mining subsidence problems in Shigetai, Halagou, Daliuta and Huojitu mining areas of Shenhua company are serious.②The DEM data with a resolution of 2m is resampled to 5m and then the difference operation is performed. The error is 0.01m, and the accuracy is high and the calculation is efficient. ③DEM difference decomposition and SBAS-InSAR technology can accurately identify the range of ground collapse with high matching degree, and each method complements and confirms each other.

Key words: DEM difference solution, SBAS-InSAR technology, coal mining subsidence area, Daliuta town

中图分类号: