[1] 李翔宇,李新源,李明宇,等.地铁盾构隧道渗漏水的产生原因及分布规律[J].建筑科学,2020,36(S1): 233-238. [2] LI Jiaqi,HE Zhaoyi,LI Dongxue,et al.Research on water seepage detection technology of tunnel asphalt pavement based on deep learning and digital image processing[J].Scientific Reports,2022,12(1): 11519. [3] 贾东峰,张伟平,刘燕萍.多尺度空间下的隧道裂缝与渗水区域检测[J].同济大学学报(自然科学版),2019,47(12): 1825-1830. [4] 孔繁臣.基于红外成像的抽水蓄能电站廊道渗漏水检测识别技术研究[J].自动化与仪器仪表,2022(12): 170-175. [5] 刘学增,桑运龙,苏云帆.基于数字图像处理的隧道渗漏水病害检测技术[J].岩石力学与工程学报,2012,31(S2): 3779-3786. [6] FAISSAL R,AHLAN M,MUTIAWATI C,et al.The comparison between the method of Bina Marga and the pavement condition index (PCI) in road damage condition evaluation[C]//Proceedings of the 10th Annual International Conference on Science and Engineering(AIC).Banda Aceh: IOP Publishing,2021. [7] NIU Zhaoyang,ZHONG G,YU Hui.A review on the attention mechanism of deep learning[J].Neurocomputing,2021,452: 48-62. [8] WU Xiongwei,SAHOO D,HOI S C.Recent advances in deep learning for object detection[J].Neurocomputing,2020,396: 39-64. [9] LIU Wei,ANGUELOV D,ERHAN D,et al.SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision(ECCV).Amsterdam: [s.n.],2016. [10] CAI Zhaowei,VASCONCELOS N.Cascade R-CNN: delving into high quality object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City: IEEE,2018: 6154-6162. [11] HE Kaiming,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV).Venice: IEEE,2017: 2980-2988. [12] GAO X,JIAN M,HU M,et al.Faster multi-defect detection system in shield tunnel using combination of FCN and faster RCNN[J].Advances in Structural Engineering,2019,22(13): 2907-2921. [13] WANG Q L,WU B G,ZHU P F,et al.ECA-Net: efficient channel attention for deep convolutional neural networks,2020 IEEE [C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE,2020. [14] 方恩权,王耀东,李星言,等.地铁盾构隧道渗漏水病害图像识别算法[J].隧道与地下工程灾害防治,2022,4(4): 28-33. [15] HUANG H W,LI Q T,ZHANG D M,et al.Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J].Tunnelling and Underground Space Technology,2018,77: 166-176. |