[1] 张睿,杨义鑫,李阳,等.自监督学习下小样本遥感图像场景分类[J].中国图象图形学报,2022,27(11): 3371-3381. [2] 陈杰虎,汪西莉.多图卷积网络的遥感图像小样本分类[J].遥感学报,2022,26(10): 2029-2042. [3] 甘正胜,孔燕,刘琦.基于元学习的小样本遥感图像分类[J].计算机工程与设计,2022,43(1): 287-292. [4] PILARSKA M,OSTROWSKI W,BAKUŁA K,et al.The potential of light laser scanners developed for unmanned aerial vehicles-the review and accuracy[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2016(W2): 87-95. [5] FINN C,ABBEEL P,LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning.Sydney,NSW: ACM Press,2017: 1126-1135. [6] JIANG Yihan,KONECNÝ J,RUSH K,et al.Improving federated learning personalization via model agnostic meta learning[J].Computer Science,2019:203591432. [7] LUCA B,JOAO F H,PHILIP H S,et al.Meta-learning with differentiable closed form solvers[J ].Computer Science,2018:29153631. [8] SNELL J,SWERSKY K,ZEMEL R.Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.[S.l.]:Computer Science,2017: 4080-4090. [9] ZHANG Pei,BAI Yunpeng,WANG Dong,et al.Few-shot classification of aerial scene images via meta-learning[J].Remote Sensing,2020,13(1): 108. [10] LEE K,MAJI S,RAVICHANDRAN A,et al.Meta-learning with differentiable convex optimization[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.[S.l.]:Computer Science,2019: 10657-10665. [11] SUNG F,YANG Yongxin,ZHANG Li,et al.Learning to compare: relation network for few-shot learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,U T:IEEE,2018: 1199-1208. [12] LIU Yanbin,LEE J,PARK M,et al.Learning to propagate labels: transductive propagation network for few-shot learning[J].Computer Science,2018: 1085.10002. [13] YE Hanjia,HU Hexiang,ZHAN Dechuan,et al.Few-shot learning via embedding adaptation with set-to-set functions[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,WA: IEEE,2020: 8808-8817. [14] SIMON C,KONIUSZ P,NOCK R,et al.Adaptive subspaces for few-shot learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle,WA: IEEE,2020: 4136-4145. [15] ZHANG Pei,LI Ying,WANG Dong,et al.RS-SSKD: self-supervision equipped with knowledge distillation for few-shot remote sensing scene classification[J].Sensors,2021,21(5): 1566. [16] ORESHKIN B,LÓPEZ P R,LACOSTE A.Tadam: task dependent adaptive metric for improved few-shot learning[J].Advances in Neural Information Processing Systems,2018(4): 719-729. |