测绘通报 ›› 2024, Vol. 0 ›› Issue (11): 38-43.doi: 10.13474/j.cnki.11-2246.2024.1107

• 学术研究 • 上一篇    下一篇

基于视觉位姿矫正的机载激光实景三维重构

高云涵1,2, 林轶丽1,2, 张敬寒1,2, 钱伟1,2, 邢玉波1,2, 史航1, 解杨敏1,2   

  1. 1. 上海大学机电工程与自动化学院, 上海 200444;
    2. 上海大学上海市智能制造及机器人重点实验室, 上海 200444
  • 收稿日期:2024-03-05 发布日期:2024-12-05
  • 通讯作者: 解杨敏,E-mail:xieym@shu.edu.com
  • 作者简介:高云涵(1999-),女,硕士,主要从事无人机感知系统方面的研究工作。E-mail:personal_gyh@163.com
  • 基金资助:
    上海市2020年度“科技创新行动计划”自然科学基金(20Z00240;20ZR1419100)

Airborne realistic 3D reconstruction based on visual pose correction

GAO Yunhan1,2, LIN Yili1,2, ZHANG Jinghan1,2, QIAN Wei1,2, XING Yubo1,2, SHI Hang1, XIE Yangmin1,2   

  1. 1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China;
    2. Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, China
  • Received:2024-03-05 Published:2024-12-05

摘要: 城市测绘中无人机搭载激光雷达悬停采集数据时受机身振动影响,容易产生运动畸变,导致融合建模效果不佳。针对该问题,本文提出了一种基于视觉位姿校正的机载激光实景三维重构方法。首先利用激光雷达扫描过程中双目相机获取的视频信息,处理得到激光雷达位姿变化的轨迹以矫正激光点云的位姿;然后将矫正后的激光点云投影到单目相机坐标系下,通过共线方程获得色彩信息,实现信息融合生成三维真彩点云;最后针对视觉位姿矫正前后的真彩点云,建立直线度、平面度、垂直度、融合赋色4个特征维度的评价标准。试验结果表明,视觉位姿矫正后的真彩点云相较于矫正前,直线度最高提升77.3%,平面度最高提升54.5%,垂直度最高矫正54.53°,色彩附着明显更准确。

关键词: 传感器, 机载移动感知系统, 视觉位姿矫正, 真彩点云

Abstract: In urban surveying and mapping, drones equipped with LiDAR hover to collect data are prone to motion distortion due to the influence of fuselage vibration, resulting in poor fusion modeling performance. This article proposes a three-dimensional reconstruction method for airborne laser real scenes based on visual pose correction. The method utilizes video information obtained from binocular cameras during the scanning process of LiDAR to process the trajectory of LiDAR pose changes to correct the pose of the laser point cloud. Then, the corrected laser point cloud is projected onto the coordinate system of a monocular camera, and color information is obtained through collinear equations to achieve information fusion and generate a three-dimensional true color point cloud, and evaluation criteria for four feature dimensions of straightness, flatness, verticality, and fusion coloring are established for the true color point cloud before and after visual pose correction. The experimental results show that the true color point cloud after visual pose correction has a maximum improvement of 77.3% in straightness, 54.5% in flatness, and 54.53° in verticality compared to before correction. The color attachment is significantly more accurate.

Key words: sensors, airborne mobile sensing system, visual pose correction, true color point cloud

中图分类号: