测绘通报 ›› 2024, Vol. 0 ›› Issue (11): 108-114.doi: 10.13474/j.cnki.11-2246.2024.1119

• 技术交流 • 上一篇    

基于改进YOLOv7的无人机图像铁路接触网部件目标检测方法

宋宗莹1, 王兴中1, 曾杉2, 张正军3, 尹太军3, 柳红利3   

  1. 1. 中国神华能源股份有限公司, 北京 100011;
    2. 中国科学院地理科学与资源研究所, 北京 100101;
    3. 中科吉芯(秦皇岛)信息技术有限公司, 河北 秦皇岛 066000
  • 收稿日期:2024-07-01 发布日期:2024-12-05
  • 通讯作者: 曾杉,E-mail:zs@lreis.ac.cn
  • 作者简介:宋宗莹(1981-),男,博士,教授级高级工程师,研究方向为重载铁路运输生产及技术管理。E-mail:10000372@ceic.com
  • 基金资助:
    中国神华能源股份有限公司科技项目(SHGF-21-01)

Target detection method of railway catenary components in UAV images based on improved YOLOv7

SONG Zongying1, WANG Xingzhong1, ZENG Shan2, ZHANG Zhengjun3, YIN Taijun3, LIU Hongli3   

  1. 1. China Shenhua Energy Co., Ltd., Beijing 100011, China;
    2. Institute of Geographic Sciences and Natural Research, CAS, Beijing 100101, China;
    3. Digitwinology International Co., Ltd., Qinhuangdao 066000, China
  • Received:2024-07-01 Published:2024-12-05

摘要: 接触网作为电气化铁路的重要设备,为列车提供能源并保证列车正常运行。若接触网系统部件出现损坏,会威胁列车运行安全,因此对接触网部件状态进行巡检至关重要。近年来,无人机在铁路接触网重要部件状态监控任务中得到了广泛的应用。但无人机拍摄的接触网图像背景复杂多变、部件目标尺度变化大、小目标较多等因素导致现有检测算法对接触网部件存在误检和漏检频繁的问题。为此,本文提出了一种基于改进YOLOv7的接触网部件目标检测方法。通过引入改进感受野模块,加强网络的特征提取能力,获得更具辨别力的目标特征表示;在相邻尺度特征图的融合过程中加入改进的坐标注意力机制,突出接触网部件目标特征并抑制冗余的背景信息;采用基于Wasserstein距离的边框损失函数对原始损失函数进行改进,有效提高检测精度。在铁路接触网部件数据集上的试验表明,改进YOLOv7算法能更准确地检测无人机拍摄图像中的各类接触网部件,平均精度达97.27%,相比改进前提高了3.83%。本文算法增强了无人机对接触网重要部件状态的高精度、快速检测能力,为更好地实现无人机智能化巡检提供了技术支撑。

关键词: 目标检测, YOLOv7, 接触网部件识别, 特征提取, 注意力机制, 损失函数

Abstract: The catenary system, as an essential component of electrified railways, provides energy to trains and ensures their normal operation. Damage to catenary system components poses a threat to train safety, making it crucial to regularly inspect the condition of these components. In recent years, UAVs have been widely used in monitoring the condition of critical catenary components. However, due to the complex and variable backgrounds, significant scale changes, and the presence of many small targets in the catenary images captured by UAVs, existing detection algorithms frequently suffer from false detections and missed detections of catenary components. To address this issue, this paper proposes a catenary component target detection method based on an improved YOLOv7 algorithm. By introducing an enhanced receptive field module, the network's feature extraction capability is strengthened, leading to more discriminative target feature representations. Additionally, an improved coordinate attention mechanism is incorporated during the fusion of adjacent scale feature maps to highlight the target features of catenary components and suppress redundant background information. The bounding box loss function is optimized using the Wasserstein distance, effectively improving detection accuracy. Experiments on the catenary component dataset show that the improved YOLOv7 algorithm can accurately detect various catenary components in drone-captured images, achieving a mean average precision of 97.27%, which is 3.83% higher than before the improvement. The proposed algorithm enhances the high-precision and rapid detection capabilities of drones for critical catenary components, providing technical support for achieving more intelligent drone inspections.

Key words: object detection, YOLOv7, contact network component recognition, feature extraction, attention mechanism, loss function

中图分类号: