测绘通报 ›› 2024, Vol. 0 ›› Issue (12): 1-5.doi: 10.13474/j.cnki.11-2246.2024.1201

• 学术研究 •    下一篇

利用行车记录仪视频提取路面车道线

黄金彩1, 李诗逸2, 石岩2   

  1. 1. 中南大学大数据研究院, 湖南 长沙 410083;
    2. 中南大学地球科学与信息物理学院, 湖南 长沙 410083
  • 收稿日期:2024-04-18 发布日期:2024-12-27
  • 作者简介:黄金彩(1991-),男,博士,讲师,主要研究方向为数据挖掘。E-mail:huangjincaicsu@csu.edu.cn
  • 基金资助:
    国家自然科学基金(42471507)

Extracting road lane lines from driving recorder video

HUANG Jincai1, LI Shiyi2, SHI Yan2   

  1. 1. Big Data Institute, Central South University, Changsha 410083, China;
    2. School of Geoscience and Info-Physics, Central South University, Changsha 410083, China
  • Received:2024-04-18 Published:2024-12-27

摘要: 路面车道线是高精地图的关键组成部分,搭载在网约车上的海量行车记录仪视频是对道路信息的实时观测,是一种较为经济的车道线数据提取的重要数据源。本文基于海量的滴滴网约车行车记录仪视频,探讨了基于LaneNet深度网络模型的路面车道线数据提取方法的可行性。该方法首先利用LaneNet网络模型对每帧视频图像进行语义分割,进而通过预测透视变换矩阵,实现对车道线像素点位置的拟合提取,最后采用模拟数据和复杂场景下的滴滴行车记录仪数据进行试验结果评价。试验结果表明,本文采用模型在车载视频图像中具有较好的车道线提取性能。

关键词: 车载视频, 高精地图, 车道线, 语义分割, 道路提取

Abstract: Road lane lines are a key component of high-precision maps. The massive driving recorder videos mounted on online ride-hailing vehicles are real-time observations of road information and are an important data source for more economical lane line data extraction. Based on the massive Didi ride-hailing driving record videos, this paper explores the feasibility of the road lane line data extraction method based on the LaneNet deep network model. This method first uses the LaneNet network model to perform semantic segmentation on each frame of the video image, and then predicts The perspective transformation matrix realizes the fitting and extraction of the lane line pixel position. In the experimental analysis, simulation data and Didi driving recorder data in complex scenes were used to evaluate the experimental results. The experimental results show that the model used in this article has better lane line extraction performance in vehicle video images.

Key words: vehicle-mounted video, high-precision map, lane lines, semantic segmentation, road extraction

中图分类号: