测绘通报 ›› 2024, Vol. 0 ›› Issue (12): 128-131,154.doi: 10.13474/j.cnki.11-2246.2024.1221

• 技术交流 • 上一篇    下一篇

结合K-means聚类的点云区域生长优化快速分割方法

涂梨平1,2, 惠振阳3, 范军林2, 刘飞鹏2, 惠婷4, 毛亚琴2   

  1. 1. 江西农业大学, 江西 南昌 330038;
    2. 江西省核工业地质调查院, 江西 南昌 330038;
    3. 东华理工大学, 江西 南昌 330013;
    4. 广东农工商职业技术学院, 广东 广州 510507
  • 收稿日期:2024-07-29 发布日期:2024-12-27
  • 通讯作者: 惠振阳,E-mail:huizhenyang2008@ecut.edu.cn E-mail:huizhenyang2008@ecut.edu.cn
  • 作者简介:涂梨平(1981-),女,硕士,正高级工程师,主要从事遥感技术、移动激光雷达相关工作。E-mail:21924581@qq.com
  • 基金资助:
    江西省地质局测绘地理信息项目(赣地质字〔2023〕71号)

The optimal segmentation method of point cloud region growth combined with K-means clustering

TU Liping1,2, HUI Zhenyang3, FAN Junlin2, LIU Feipeng2, HUI Ting4, MAO Yaqin2   

  1. 1. Jiangxi Agricultural University, Nanchang 330038, China;
    2. Jiangxi Nuclear Industry Geology Survey Institute, Nanchang 330038, China;
    3. East China University of Technology, Nanchang 330013, China;
    4. College of Management, Guangdong AlB Polytechnic, Guangzhou 510507, China
  • Received:2024-07-29 Published:2024-12-27

摘要: 机载LiDAR点云分割是点云数据处理的重要环节。区域生长法是点云分割的经典方法,但该方法通常是以点基元进行生长,在处理数据量较大的点云数据时,由初始种子点选取的不确定性,存在分割速度慢和分割性能不稳定等问题。针对这些问题,本文提出了一种将K-means聚类法与区域生长法结合的点云优化快速分割算法。首先,对点云进行K-means聚类获取对象基元并计算质心点,判断各对象基元质心点是否满足角度和高差阈值,实现基于对象基元质心点的点云滤波;然后,遍历地物对象基元,通过计算对象基元内各点的邻近点的法向量角度和距离,判断其是否满足阈值生长条件,重复迭代直至分割结束;最后,采用3组不同区域的点云数据进行试验分析。试验结果表明,本文方法的分割精度可达到86.19%,相较于传统的K-means聚类法与区域生长法机载LiDAR点云分割的精度有大幅度提升。此外,本文方法相较于传统的区域生长法能够显著提高运算效率。

关键词: 机载LiDAR, 点云分割, 对象基元, K-means聚类, 区域生长

Abstract: Point cloud segmentation is an important part of airborne LiDAR point clouds processing. The regional growth method is a traditional classical method of point cloud segmentation, but it usually takes the point as the unit to grow, which leads to the problems of slow segmentation speed and unstable segmentation performance. To solve these problems, this paper proposes a point cloud optimization fast segmentation algorithm combining K-means clustering method and regional growth method. First, K-means clustering is carried out for point cloud to obtain object primitives and calculate centroid points, judge whether the centroid points of each object element meet the angle and height difference threshold, and realize point cloud filtering based on centroid points. Then, the ground object primitives are traversed, and the normal vector angle and distance are calculated for the adjacent points within the object primitives to determine whether they meet the growth conditions of the regional growth threshold. The iteration is repeated until the end of the segmentation. Three groups of point cloud data from different regions are used for experimental analysis. The experimental results shows that the segmentation accuracy of this method could reach 86.19%, which is greatly improved compared with the traditional K-means clustering method and regional growth method airborne LiDAR point cloud segmentation accuracy. In addition, this method can significantly improve the computational efficiency compared with the traditional regional growth method.

Key words: airborne LiDAR, point cloud segmentation, object primitive, K-means clustering, regional growth

中图分类号: