[1] MA Yuchi,ANDERSON J,CROUCH S,et al. Moving object detection and tracking with Doppler LiDAR[J]. Remote Sensing,2019,11(10):1154. [2] LIANG Ming,YANG Bin,CHEN Yun,et al. Multi-task multi-sensor fusion for 3D object detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach:IEEE,2019. [3] CHAVEZ-GARCIA R O,AYCARD O. Multiple sensor fusion and classification for moving object detection and tracking[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(2):525-534. [4] BATTRAWY R,SCHUSTER R,WASENMULLER O,et al. LiDAR-flow: dense scene flow estimation from sparse LiDAR and stereo images[C]//Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Macau:IEEE,2019. [5] BEHLEY J,STACHNISS C. Efficient surfel-based SLAM using 3D laser range data in urban environments[J].Robotics: Science and Systems,2018:59. [6] FRANKE U,RABE C,BADINO H,et al. 6D-vision: fusion of stereo and motion for robust environment perception[M]//Lecture Notes in Computer Science. Berlin.Heidelberg: Springer Berlin Heidelberg,2005:216-223. [7] MOOSMANN F,PINK O,STILLER C. Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion[C]//Proceedings of 2009 IEEE Intelligent Vehicles Symposium.Xi'an:IEEE,2009. [8] YOON D,TANG T,BARFOOT T. Mapless online detection of dynamic objects in 3D LiDAR[C]//Proceedings of the 16th Conference on Computer and Robot Vision (CRV).Kingston.QC:IEEE,2019. [9] GU Shuo,YANG Jian,KONG Hui. A cascaded LiDAR-camera fusion network for road detection[C]//Proceedings of 2021 IEEE International Conference on Robotics and Automation (ICRA).Xi'an:IEEE,2021. [10] LEE S,LIM H,MYUNG H. Patchwork: fast and robust ground segmentation solving partial under-segmentation using 3D point cloud[C]//Proceedings of 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Kyoto:IEEE,2022. [11] MIN Chen,JIANG Weizhong,ZHAO Dawei,et al. ORFD: a dataset and benchmark for off-road freespace detection[C]//Proceedings of 2022 International Conference on Robotics and Automation (ICRA).Philadelphia:IEEE,2022:2532-2538. [12] MATURANA D,CHOU Powei,UENOYAMA M,et al. Real-time semantic mapping for autonomous off-road navigation[M]//Springer Proceedings in Advanced Robotics. Cham: Springer International Publishing,2017. [13] SHABAN A,MENG X,LEE J,et al. Semantic terrain classification for off-road autonomous driving[C]// Proceeding of the 5th Conference on Robot Learning (CoRL). London:[s.n.],2021. [14] GUAN Tianrui,KOTHANDARAMAN D,CHANDRA R,et al. GA-nav: efficient terrain segmentation for robot navigation in unstructured outdoor environments[J]. IEEE Robotics and Automation Letters,2022,7(3):8138-8145. [15] MENZE M,GEIGER A. Object scene flow for autonomous vehicles[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston:IEEE,2015: 3061-3070. [16] KLASING K,WOLLHERR D,BUSS M. A clustering method for efficient segmentation of 3D laser data[C]//Proceedings of 2008 IEEE International Conference on Robotics and Automation. Pasadena:IEEE,2008. [17] ASRL.Motion-distorted LiAR simulation dataset[EB/OL].[2024-05-20].http://asrl.utias.utoronto.ca/datasets/mdlidar/index.html#overview(2020). [18] ASVADI A,PREMEBIDA C,PEIXOTO P,et al. 3D LiDAR-based static and moving obstacle detection in driving environments: an approach based on voxels and multi-region ground planes[J]. Robotics and Autonomous Systems,2016,83:299-311. [19] DEWAN A,OLIVEIRA G L,BURGARD W. Deep semantic classification for 3D LiDAR data[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Vancouver:IEEE,2017. |