[1] 刘万涛,聂云峰,陈兴峰,等. 复杂背景下深度学习方法的夜光船舶目标检测[J]. 航天返回与遥感,2022,43(3):124-137. [2] 吴一全,刘忠林. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报,2019,23(4):582-602. [3] CAO Ran,FANG Leyuan,LU Ting,et al. Self-attention-based deep feature fusion for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters,2021,18(1):43-47. [4] FU Jun,LIU Jing,TIAN Haijie,et al. Dual attention network for scene segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach:IEEE,2019:3141-3149. [5] AGHDAMI-NIA M,SHAH-HOSSEINI R,ROSTAMI A,et al. Automatic coastline extraction through enhanced sea-land segmentation by modifying standard U-Net[J]. International Journal of Applied Earth Observation and Geoinformation,2022,109:102785. [6] CUI Binge,JING Wei,HUANG Ling,et al. SANet:a sea-land segmentation network via adaptive multiscale feature learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,14:116-126. [7] CHEN Yujia,ZHANG Guo,CUI Hao,et al. A novel weakly supervised semantic segmentation framework to improve the resolution of land cover product[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2023,196:73-92. [8] ZHAO Wencheng,XU Xianze,ZHU Yanyan,et al. Active contour model based on local and global Gaussian fitting energy for medical image segmentation[J]. Optik,2018,158:1160-1169. [9] HE Xin,ZHOU Yong,ZHAO Jiaqi,et al. Swin transformer embedding U-Net for remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:4408715. [10] LIU Ze,LIN Yutong,CAO Yue,et al. Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal:IEEE,2021:9992-10002. [11] LI Haifeng,QIU Kaijian,CHEN Li,et al. SCAttNet:semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters,2021,18(5):905-909. [12] 高慧,阎晓东,张衡,等. 基于Res2Net的多尺度遥感影像海陆分割方法[J]. 光学学报,2022,42(18):147-154. [13] GUO Menghao,LU Chengze,LIU Zhengning,et al. Visual attention network[J]. Computational Visual Media,2023,9(4):733-752. [14] GUO Menghao,XU Tianxing,LIU Jiangjiang,et al. Attention mechanisms in computer vision:a survey[J]. Computational Visual Media,2022,8(3):331-368. [15] GENG Zhengyang,GUO Menghao,CHEN Hongxu,et al. Is attention better than matrix decomposition?[EB/OL].[2024-06-07].https://blog.csdn.net/qq.45041871/article/details/127773250. [16] XIONG Xuan,WANG Xiaopeng,ZHANG Jiahua,et al. TCUNet:a lightweight dual-branch parallel network for sea-land segmentation in remote sensing images[J]. Remote Sensing,2023,15(18):4413. [17] RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[M]//Medical Image Computing and Computer-Assisted Intervention. Cham:Springer International Publishing,2015:234-241. [18] CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic segmentation image segmentation[EB/OL]. [2017-12-05].https://arxiv.org/abs/1706.05587v2. [19] ZHAO Hengshuang,SHI Jianping,QI Xiaojuan,et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE,2017:6230-6239. [20] YUAN Yuhui,CHEN Xilin,WANG Jingdong. Object-contextual representations for semantic segmentation[M]//Computer Vision - ECCV 2020. Cham:Springer International Publishing,2020:173-190. [21] XU Jiacong,XIONG Zixiang,BHATTACHARYYA S P. PIDNet:a real-time semantic segmentation network inspired by PID controllers[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver:IEEE,2023:19529-19539. |