测绘通报 ›› 2025, Vol. 0 ›› Issue (3): 66-70.doi: 10.13474/j.cnki.11-2246.2025.0311

• 学术研究 • 上一篇    

基于改进的DeepLabV3+网络的Sentinel-1影像水体提取

赵兴旺1,2,3, 赵妍1,2,3, 刘超1,2,3, 刘春阳1,2,3   

  1. 1. 安徽理工大学空间信息与测绘工程学院, 安徽 淮南 232001;
    2. 矿山采动灾害空天地协同监测与预警安徽普通高校重点实验室, 安徽 淮南 232001;
    3. 矿区环境与灾害协同监测煤炭行业工程研究中心, 安徽 淮南 232001
  • 收稿日期:2024-06-25 发布日期:2025-04-03
  • 作者简介:赵兴旺(1982—),男,博士,教授,主要从事GNSS卫星遥感、遥感图像处理研究工作。E-mail:xwzhao2008@126.com
  • 基金资助:
    安徽省自然科学基金(2208085MD101;2108085QD171)

Water extraction from Sentinel-1 images based on improved DeepLabV3+ network

ZHAO Xingwang1,2,3, ZHAO Yan1,2,3, LIU Chao1,2,3, LIU Chunyang1,2,3   

  1. 1. School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China;
    2. Key Laboratory of Aviation-Aerospace-Ground Cooperative Monitoring and Early Warning of Coal Mining-induced Disasters of Anhui Higher Education Institutes, Huainan 232001, China;
    3. Coal Industry Engineering Research Center of Mining Area Environmental and Disaster Cooperative Monitoring, Huainan 232001, China
  • Received:2024-06-25 Published:2025-04-03

摘要: 为了提高雷达影像提取水体的精度,本文以2023年Sentinel-1系列影像为数据源,在DeepLabV3+网络模型的基础上优化主干网络,并融合SE通道注意力机制,提出了一种改进的深度学习网络模型SEDeepLabV3+,针对改进的模型进行了消融试验,并以7月31日北京市昌平区水体提取为例,对该模型进行了验证。试验结果表明,使用改进后的SEDeepLabV3+方法提取水体时,平均交并比与像素准确率能够达到88.55%和93.49%,与DeepLabV3+、HRNet、U-Net相比,平均交并比分别提高了2.26%、2.31%和5.08%,平均像素准确率分别提高了0.76%、0.80%和3.07%,改进后的SEDeepLabV3+不仅具有更轻量级的网络结构,而且能够有效地提高水体提取精度和效率。

关键词: DeepLabV3+, 水体提取, SE通道注意力机制, Sentinel-1影像, 语义分割

Abstract: In order to improve the accuracy of water extraction from radar images, this paper uses Sentinel-1 series images from 2023 as the data source, optimizes the backbone network on the basis of the DeepLabV3+ network model, integrates the SE channel attention mechanism, and proposes an improved deep learning network model SEDeepLabV3+. The ablation experiment is carried out for the improved model, and the model is verified by the water body extraction in Changping district of Beijing on July 31. The experimental results show that when the improved SEDeepLabV3+ method is used to extract water body, the mean intersection over union and pixel accuracy can reach 88.55% and 93.49%. Compared with DeepLabV3+, HRNet and U-Net, the average intersection ratio is increased by 2.26%,2.31% and 5.08%,and the average pixel accuracy is increased by 0.76%,0.80% and 3.07%,respectively. The improved SEDeepLabV3+ not only has a lighter network structure,but also can effectively improve the accuracy and efficiency of water extraction.

Key words: DeepLabV3+, water extraction, SE channel attention mechanism, Sentinel-1 images, semantic segmentation

中图分类号: