[1] ZHOU Z,ZHANG J,GONG C.Automatic detection method of tunnel lining multi-defects via an enhanced you only look once network[J].Computer-Aided Civil and Infrastructure Engineering,2022,37(6):762-780. [2] ZHANG N,ZHU X,REN Y.Analysis and study on crack characteristics of highway tunnel lining[J].Civil Engineering Journal,2019,5(5):1119-1123. [3] 徐鹏宇,唐超,王丽.轨道交通盾构隧道病害空间分布特征和自相关性研究[J].测绘通报,2021(8):93-96. [4] 黑焕学.城市轨道交通运营隧道病害辨识与结构健康状态评价[D].北京:北京交通大学,2021. [5] 李梓豪,唐超,王柄强,等.多源监测数据在隧道结构服役状态评价中的研究与应用[J].测绘通报,2020(9):18-22. [6] 樊廷立,唐超,王柄强.移动三维激光扫描技术在盾构隧道收敛监测中的应用[J].测绘通报,2020(9):50-53. [7] 吴晓军,白韶红,啜丙强,等.基于CMOS线阵相机地铁隧道裂缝快速检测系统[J].路基工程,2015(3):185-190. [8] 刘轩然.基于面阵相机的隧道裂缝图像采集与检测技术[D].北京:北京交通大学,2019. [9] LIAO J,YUE Y,ZHANG D,et al.Automatic tunnel crack inspection using an efficient mobile imaging module and a lightweight CNN[J].IEEE Transaction on Intelligent Transportation Systems,2022,23(9):15190-15203. [10] ZHAO S,ZHANG D,XUE Y,et al.A deep learning-based approach for refined crack evaluation from shield tunnel lining images[J].Automation in Construction,2021,132:103934. [11] HUANG H,ZHAO S,ZHANG D,et al.Deep learning-based instance segmentation of cracks from shield tunnel lining images[J].Structure Infrastructure Engineering,2022,18(2):183-196. [12] XUE Y,JIA F,CAI X,et al.An optimization strategy to improve the deep learning-based recognition model of leakage in shield tunnels[J].Computer-aided Civil and Infrastructure Engineering,2021,37(3):386-402. [13] LIU Ziming,GAO Guangyu,SUN Lin,et al.HRDNet:high-resolution detection network for small objects[EB/OL].[2024-06-15].https://arxiv.org/abs/2006.07607v1. [14] RŮŽI AČU1 KA V,FRANCHETTI F.Fast and accurate object detection in high resolution 4K and 8K video using GPUs[EB/OL].[2024-06-15].https://arxiv.org/abs/1810.10551v1. [15] ZHANG Y,XU T,WEI Z.Pre-locate net for object detection in high-resolution images[J].China Journal of Aeronautics,2022,35(10):313-325. [16] AHLSWEDE S,ASAM S,RÖDER A.Hedgerow object detection in very high-resolution satellite images using convolutional neural networks[J].Journal of Applied Remote Sensing,2021,15(1):1-28. [17] REN Shaoqing,HE Kaiming,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[EB/OL].[2024-06-15].https://arxiv.org/abs/1506.01497v3. [18] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas:[s.n.],2016. [19] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2024-06-15].https://arxiv.org/abs/1409.1556v6. [20] HOWARD A G,ZHU Menglong,CHEN Bo,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2024-06-15].https://arxiv.org/abs/1704.04861v1. [21] CARUANA R,LAWRENCE S,GILES L.Overfitting in neural nets:Backpropagation,conjugate gradient,and early stopping[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2001. |