[1] 张伟,余健,李葳,等.广州市排水管道沉积现状研究分析[J].给水排水,2012,48(7):147-150. [2] 马铎,方宏远,王念念,等.基于自注意力的排水管道缺陷检测方法[J].城市勘测,2022(3):166-169. [3] 吕兵,刘玉贤,叶绍泽,等.基于卷积神经网的CCTV视频中排水管道缺陷的智能检测[J].测绘通报,2019(11):103-108. [4] TAN Y,CAI R Y,LI J R,et al.Automatic detection of sewer defects based on improved you only look once algorithm[J].Automation in Construction,2021,131:103912. [5] 王大成,谭军辉,彭述刚,等.利用深度学习模型智能识别地下排水管道缺陷[J].测绘通报,2021(10):141-145. [6] 彭述刚,王大成,谭军辉,等.基于改进卷积神经网络的城市地下排水管道视频智能识别[J].测绘通报,2021(10):132-135. [7] 银霞,叶绍泽.基于卷积神经网络的嵌入式排水管道缺陷检测系统[J].城市勘测,2023(2):178-182. [8] 周倩倩,刘汉林,陈维锋,等.基于Deeplabv3+的排水管道缺陷检测与语义分割[J].中国给水排水,2022,38(13):22-27. [9] 陆绮荣,丁昕,梁雅雯.基于改进YOLOX的地下排水管道缺陷识别算法[J].电子测量技术,2022,45(21):161-168. [10] 李伟,刘桂雄,曾成刚.基于实例分割+CCTV排水管道缺陷检测方法研究[J].电子测量技术,2022,45(3):153-157. [11] CHENG J C P,WANG M Z.Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques[J].Automation in Construction,2018,95:155-171. [12] 钟洪德.基于深度学习的排水管道缺陷内窥检测智能识别系统研究[J].城市勘测,2022(1):165-170. [13] 周倩倩,司徒祖祥,刘汉林,等.基于生成对抗网络和迁移学习的排水管道缺陷识别[J].中国给水排水,2022,38(17):27-33. [14] MA D,LIU J H,FANG H Y,et al.A multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN[J].Construction and Building Materials,2021,312:125385. [15] 赵凯琳,靳小龙,王元卓.小样本学习研究综述[J].软件学报,2021,32(2):349-369. [16] 孙统风,王康,郝徐.面向小样本学习的双重度量孪生神经网络[J].计算机应用研究,2023,40(9):2851-2855. [17] LI W B,WANG L,XU J L,et al.Revisiting local descriptor based image-to-class measure for few-shot learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019. |