[1] SU T C, YANG M D. Application of morphological segmenta-tion to leaking defect detection in sewer pipelines[J]. Sensors, 2014, 14(5):8686-8704. [2] HAWARI A, ALAMIN M, ALKADOUR F, et al. Auto-mated defect detection tool for closed circuit television (CCTV) inspected sewer pipelines[J]. Automation in Construction, 2018, 89:99-109. [3] 孙文雅, 李天剑, 黄民, 等.基于图像处理的管道裂缝检测[J]. 制造业自动化, 2012, 34(1):36-39. [4] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [5] 孙志军, 薛磊, 许阳明, 等.深度学习研究综述[J]. 计算机应用研究, 2012, 29(8):2806-2810. [6] KRIZHENSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communication of the ACM, 2017, 60(6):84-90. [7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE, 2014:580-587. [8] SHELHAMER E, LONG J, DARRELL T. Fully convolu-tional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [9] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3d convolutional networks[C]//Proceedings of 2015 IEEE international conference on computer vision. Santiago, Chile:IEEE, 2015:4489-4497. [10] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. Cham:Springer, 2014:818-833. [11] XU Y, CHEN Z, XIE Z, et al. Quality assessment of building footprint data using a deep autoencoder network[J]. International Journal of Geographical Information Science, 2017, 31(10):1-23. [12] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Santiago:IEEE, 2015:1-9. [13] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:770-778. [14] ZHANG L, ZHANG L, Bo D. Deep learning for remote sensing data:a technical tutorial on the state of the art[J]. IEEE Geoscience & Remote Sensing Magazine, 2016, 4(2):22-40. [15] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[J]. ICML'15, 2015, 37:448-456. [16] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th international conference on artificial intelligence and statistics.[S.l.]:Journal of Machine Learning Research, 2011:315-323. [17] ZHOU L, ZHANG C, MING W. D-LinkNet:LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City:[s.n.], 2018:192-1924. [18] ZHANG Z, LIU Q, WANG Y. Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 99:1-5. [19] GOODMAN J.Classes for fast maximum entropy training[C]//Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing.[S.l.]:IEEE, 2001:561-564. |