测绘通报 ›› 2025, Vol. 0 ›› Issue (4): 45-50.doi: 10.13474/j.cnki.11-2246.2025.0408

• 学术研究 • 上一篇    

联合机器学习与SBAS-InSAR的青藏高原冻土形变监测

杨洋, 贾洪果, 柏铮航, 刘宇辰   

  1. 西南交通大学地球科学与环境工程学院, 四川 成都 610031
  • 收稿日期:2024-08-30 发布日期:2025-04-28
  • 通讯作者: 贾洪果。E-mail:rsjia@swjtu.edu.cn
  • 作者简介:杨洋(2000—),男,硕士,主要研究方向为合成孔径雷达干涉测量。E-mail:yy2022201253@my.swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(U22A20565;42371460;42171355);四川省重大科技专项(2023ZDZX0030);四川省科技计划(2025ZNSFSC0330)

Integrated monitoring of permafrost deformation in the Qinghai-Xizang Plateau using machine learning and SBAS-InSAR

YANG Yang, JIA Hongguo, BAI Zhenghang, LIU Yuchen   

  1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2024-08-30 Published:2025-04-28

摘要: 受全球气候变暖影响,青藏高原冻土退化和地表失稳问题不断加剧,对基础设施的建设维护和区域社会经济发展造成阻碍。近年来,SBAS-InSAR技术已在冻土地表形变监测中得到广泛应用,但由于青藏高原部分地区存在较为严重的失相干现象,导致形变监测结果出现空间不连续性,进而无法获得全面且精细的监测结果。针对上述问题,本文提出了一种联合机器学习与SBAS-InSAR的冻土形变监测方法,选取西藏阿里门士乡为研究区域,使用2020年1月7日至2021年6月6日共43景Sentinel-1A降轨影像数据提取地表形变信息;综合多类环境因子数据生成训练集后,引入机器学习模型拟合SBAS-InSAR监测结果与环境因子之间的内在关系,从而获取研究区连续形变速率图。结果表明,联合随机森林模型与SBAS-InSAR的方法效果最优,通过该方法对冻土形变缺失区域进行插值能极大提高原有SBAS-InSAR方法的监测覆盖率,其插值结果平均误差和均方根误差分别为0.459和0.739 mm/a。

关键词: SBAS-InSAR, 机器学习, 地表形变, 冻土, Sentinel-1A

Abstract: Affected by global climate change, the degradation of permafrost and surface instability in the Qinghai-Xizang Plateau have been continuously intensifying, posing obstacles to the construction and maintenance of infrastructure as well as regional socio-economic development. In recent years, SBAS-InSAR technology has been widely applied in monitoring surface deformation of permafrost. However, due to severe decorrelation phenomena in some areas of the Qinghai-Xizang Plateau, the deformation monitoring results exhibit spatial discontinuity, making it difficult to obtain comprehensive and detailed monitoring outcomes. To address these issues, this paper proposes a method for monitoring permafrost deformation that integrates machine learning with SBAS-InSAR. Taking the Menshi Township in Ali, Xizang, as the study area, a total of 43 descending Sentinel-1A images from January 7, 2020, to June 6, 2021, are used to extract surface deformation information. After generating a training dataset by integrating multiple environmental factor data, a machine learning model is introduced to fit the intrinsic relationship between SBAS-InSAR monitoring results and environmental factors, thereby obtaining a continuous deformation rate map of the study area. The results indicate that the method combining the random forest model with SBAS-InSAR performs optimally. By interpolating the missing regions of permafrost deformation using this method, the monitoring coverage of the original SBAS-InSAR method can be significantly improved, with an average error and root mean square error of 0.459 and 0.739 mm/a, respectively, for the interpolation results.

Key words: SBAS-InSAR, machine learning, surface deformation, frozen soil, Sentinel-1A

中图分类号: