测绘通报 ›› 2025, Vol. 0 ›› Issue (3): 15-20.doi: 10.13474/j.cnki.11-2246.2025.0303

• 矿区动态监测 • 上一篇    

时序InSAR技术在矿区地表沉降监测与时空演化分析中的应用

张昱鑫1, 袁希平2,3, 甘淑1,2, 彭翔1, 王松4   

  1. 1. 昆明理工大学国土资源工程学院, 云南 昆明 650000;
    2. 云南省高校高原山地空间信息测绘技术应用工程研究中心, 云南 昆明 650000;
    3. 滇西应用技术大学地球科学与工程学院, 云南 大理 671000;
    4. 会理市财通铁钛有限责任公司, 四川 凉山 615000
  • 收稿日期:2024-05-07 发布日期:2025-04-03
  • 通讯作者: 袁希平。E-mail:YXP@kust.edu.cn
  • 作者简介:张昱鑫(1996—),男,硕士生,主要研究方向为国土资源境遥感。E-mail:931845106@qq.com
  • 基金资助:
    国家自然科学基金(62266026)

Application of time series InSAR technology in surface subsidence monitoring and spatio-temporal evolution analysis in mining area

ZHANG Yuxin1, YUAN Xiping2,3, GAN Shu1,2, PENG Xiang1, WANG Song4   

  1. 1. College of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650000, China;
    2. Engineering Research Center of Plateau and Mountain Spatial Information Mapping Technology Application, Yunnan University, Kunming 650000, China;
    3. School of Earth Science and Engineering, West Yunnan University of Applied Technology, Dali 671000, China;
    4. Huili Caitong Iron and Titanium Co., Ltd., Liangshan 615000, China
  • Received:2024-05-07 Published:2025-04-03

摘要: 针对地表沉降对矿区安全、环境、社会经济发展及资源利用可持续性带来的危害问题,首先获取2021年12月31日至2024年3月2日的63景Sentinel-1A数据,采用SBAS-InSAR (时间序列干涉测量)技术对白草矿区的地表变形进行监测,从而获得该矿区的地表沉降速率和累计沉降结果;然后利用实测数据对监测结果进行可靠性分析;最后基于LSTM模型对矿区进行沉降预测,并详细分析了矿区沉降的时空变化特征与演化规律。最终得出结论:①空间上,白草矿区地表沉降主要集中矿区西部,最大沉降量达-316.86 mm,最大平均沉降速率达-148.4 mm/a,总沉降面积为0.623 6 km2,其中0.280 4 km2的重度和极重度沉降区域需要重点监测;②时序上,沉降较严重区域自监测起始点便开始发生沉降,且沉陷速率趋于匀速,若不加以防护,该区域未来将持续沉降,且可能会加剧沉降;③实测数据和监测数据的拟合程度较高,决定系数R2达到0.994,LSTM预测模型对监测数据进行预测效果较好,预测值和监测值线性拟合决定系数R2在0.946以上,表明利用LSTM模型进行地表沉降预测能达到精度要求。该试验结论可为矿区的灾害防治提供技术支持,为更精准的矿区地表形变评估提供有力支持。

关键词: 时序InSAR, SBAS-InSAR, 地表形变监测, 时空演化, LSTM模型

Abstract: In view of the hazards caused by surface subsidence to the safety, environment, socio-economic development and sustainability of resource utilization in the mining area, 63 Sentinel-1A data from December 31, 2021 to March 2, 2024 were first obtained, and SBAS-InSAR (time series interferometry) technology was adopted to monitor the surface deformation of Baicao mining area. The results of surface settlement rate and cumulative settlement in the mine area are obtained, and then the reliability analysis of the monitoring results is carried out by using the measured data. Finally, the settlement of the mine area is predicted based on the LSTM model, and the spatiotemporal variation characteristics and evolution rules of the settlement of the mine area are analyzed in detail.The final conclusions are as follows: ① Spatially, the surface subsidence of Baichuang Mining area is mainly concentrated in the west of the mining area, with the maximum subsidence of -316.86mm and the maximum annual average subsidence rate of -148.4mm/a, and the total subsidence area of 0.6236km2, of which the heavy and extremely heavy subsidence area of 0.2804km2 needs to be monitored.②In time series, the area with severe subsidence starts to settle from the monitoring starting point, and the subsidence rate tends to be uniform. If no protection is taken, the area will continue to settle in the future, and the settlement may be intensified.③The fitting degree of measured data and monitoring data is high, and the coefficient of determination R2 is up to 0.994. The prediction effect of LSTM prediction model on monitoring data is good, and the linear fitting coefficient of determination R2 of predicted value and monitoring value can reach more than 0.946, indicating that the prediction of surface settlement by LSTM model can meet the requirement of accuracy. The experimental results can provide technical support for disaster prevention and control in mining areas, and provide strong support for more accurate surface deformation evaluation in mining areas.

Key words: temporal InSAR, SBAS-InSAR, surface deformation monitoring, spatio-temporal evolution, LSTM model

中图分类号: