测绘通报 ›› 2025, Vol. 0 ›› Issue (5): 125-130,137.doi: 10.13474/j.cnki.11-2246.2025.0521

• 技术交流 • 上一篇    

基于图像处理的铁轨伤损检测

徐东升, 张瑞, 席瑞杰   

  1. 武汉理工大学信息工程学院, 湖北 武汉 430070
  • 收稿日期:2024-09-11 发布日期:2025-06-05
  • 通讯作者: 席瑞杰。E-mail:rjxi@whut.edu.cn
  • 作者简介:徐东升(1985—),男,博士,教授,研究方向为岛礁工程基础设施智能感知与安全防护。E-mail:dsxu@whut.edu.cn
  • 基金资助:
    国家自然科学基金(42404021);湖北省自然科学基金(2024AFB232)

Rail damage detection based on image processing

XU Dongsheng, ZHANG Rui, XI Ruijie   

  1. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Received:2024-09-11 Published:2025-06-05

摘要: 铁轨伤损是指钢轨在使用过程中发生的折断、裂纹及其他影响和限制铁轨使用性能的各种状态。对铁轨进行伤损检测是维护铁路运输安全的必要方法。针对目前铁路维护大多依赖人工目测巡检、故障检测实时性差等问题,本文提出了一种基于改进YOLOv5模型的铁轨裂纹检测方法;同时,针对现有神经网络模型对铁轨伤损识别的不足,受图像变化检测的启发,提出了一种基于尺度不变特征转换(SIFT)的铁轨变化检测方法,以实现铁轨伤损识别。试验表明,改进YOLO模型平均均值精度相较于原模型提高了4.6%,具有良好的应用前景;基于SIFT的算法具有较高的检测精度,能够很好地识别铁轨伤损区域,满足实际工程需求。

关键词: 铁轨伤损检测, YOLOv5, 图像变化检测, SIFT

Abstract: Rail damage refers to various states that occur during the use of rails, such as breakage, cracks, and other conditions that affect and limit the performance of rail use. Conducting damage detection on railway tracks is a necessary method for maintaining railway transportation safety. This paper proposes a rail crack detection method based on an improved YOLOv5 model to address the problems of current railway maintenance relying mostly on manual visual inspection and poor real-time fault detection. Meanwhile, in response to the shortcomings of existing neural network models in identifying rail damage and inspired by image change detection, a rail change detection method based on scale invariant feature transformation (SIFT) is proposed to achieve rail damage recognition. Experiments have shown that the improved YOLO model has a 4.6% increase in average mean accuracy compared to the original model, and has good application prospects. The SIFT based algorithm has high detection accuracy and can effectively identify rail damage areas, meeting practical engineering needs.

Key words: rail damage detection, YOLOv5, image change detection, SIFT

中图分类号: