测绘通报 ›› 2019, Vol. 0 ›› Issue (8): 48-53.doi: 10.13474/j.cnki.11-2246.2019.0250

• 学术研究 • 上一篇    下一篇

基于特征点法向量的点云配准算法

孙培芪, 卜俊洲, 陶庭叶, 房兴博, 贺晗, 冯佳琪   

  1. 合肥工业大学土木与水利工程学院, 安徽 合肥 230009
  • 收稿日期:2018-11-20 修回日期:2019-01-06 出版日期:2019-08-25 发布日期:2019-09-06
  • 作者简介:孙培芪(1995-),男,硕士生,研究方向为激光雷达点云数据处理。E-mail:875373474@qq.com
  • 基金资助:
    安徽省自然科学基金(1808085MD105)

Point cloud registration algorithm based on feature point method vector

SUN Peiqi, BU Junzhou, TAO Tingye, FANG Xingbo, HE Han, FENG Jiaqi   

  1. School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2018-11-20 Revised:2019-01-06 Online:2019-08-25 Published:2019-09-06

摘要: 在传统的迭代最近点算法(ICP)中,需要两片点云具有良好的初始位置,否则在配准时容易陷入局部最优。针对该问题,本文提出了一种基于特征点提取与配对的粗配准方法,以调整两片点云重叠部分的初始位置。首先,利用SIFT算法提取两片点云公共部分的特征点;其次,根据特征点法向量之间的欧氏距离将两片点云的特征点两两配对;然后,利用法向量的夹角对特征点对进行提纯;最后,通过单位四元数法,求解出旋转及平移矩阵,完成粗配准。试验表明,本文基于特征点法向量的粗配准方法可为精配准提供良好的初始位置,在一定程度上避免配准时陷入局部最优的现象。

关键词: SIFT算法, 法向量欧氏距离, 法向量夹角, 单位四元数, ICP算法

Abstract: In the traditional ICP algorithm, it is necessary to have a good initial position of two points cloud, otherwise it is easy to fall into local optimization when it is on time. Aiming at this problem, this paper proposes a rough registration method based on feature point extraction and pairing to adjust the initial position of the overlapping parts of two points cloud. Firstly, the feature points of the common part of two point clouds are extracted by using SIFT algorithm, and then the feature points of two point clouds are paired according to the Euclidean distance between the feature point method vectors, and the feature point pairs are purified by using the angle of the method vector. Finally, the rotation and translation matrices are solved by means of unit four yuan number method, and the coarse registration is completed. Experiments show that the coarse registration method based on feature point vector can provide a good initial position for the precision registration, and can avoid the phenomenon that the local optimization is caught on time to a certain extent.

Key words: SIFT algorithm, method vector European distance, method vector angle, unit four yuan, ICP algorithm

中图分类号: