测绘通报 ›› 2025, Vol. 0 ›› Issue (6): 49-54.doi: 10.13474/j.cnki.11-2246.2025.0609

• 学术研究 • 上一篇    

结合Hough变换与语义特征点的激光点云与多光谱影像融合

张莹滢1, 臧玉府1, 石佳俊1, 肖雄武2   

  1. 1. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044;
    2. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430072
  • 收稿日期:2024-11-13 发布日期:2025-07-04
  • 通讯作者: 臧玉府。E-mail:002767@nuist.edu.cn
  • 作者简介:张莹滢(2002—),女,硕士生,主要研究方向为激光点云智能处理。E-mail:lianyanzhangyy@163.com
  • 基金资助:
    国家自然科学基金面上项目(42171433);国家自然青年科学基金(41701529;42101449)

Laser point cloud and multi-spectral image fusion combining Hough transform and semantic feature points

ZHANG Yingying1, ZANG Yufu1, SHI Jiajun1, XIAO Xiongwu2   

  1. 1. School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
  • Received:2024-11-13 Published:2025-07-04

摘要: 在城市地物识别与分类、环境监测及文物记录与保护中,机载激光点云和多光谱影像是两种重要的遥感数据。然而,现有的多模态数据融合方法难以实现两种跨模态数据的有效融合。因此,本文提出一种结合Hough变换与语义特征点的激光点云与多光谱影像融合方法。采用Line-CNN深度学习网络提取线特征,通过Hough变换检测矩形框并生成相应的语义特征点,进而基于特征点实现多模态数据的精确匹配融合。试验结果表明,该方法在4种不同场景下匹配精度均高达97.98%,融合相关系数高达90%以上,具有优异的稳健性和较高的精确度,为多源遥感数据融合提供了一种新的解决方法。

关键词: Hough变换, 语义特征点, Line-CNN网络, 多模态数据融合

Abstract: In urban land object recognition and classification, environmental monitoring, and cultural heritage recording and protection, airborne LiDAR point cloud and multi-spectral images are two important remote sensing data. However, existing multi-modal data fusion methods have difficulty in effectively integrating the two cross-modal data. Therefore, this paper proposes a method for fusing LiDAR point clouds with multi-spectral images by combining Hough transform with semantic feature points. Line-CNN deep learning network is used to extract line features, and Hough transform is employed to detect rectangular boxes and generate corresponding semantic feature points, thus achieving precise matching fusion of multimodal data based on feature points. Experiments results show that the matching accuracy of this method reaches as high as 97.98% in four different scenarios, and the fusion correlation coefficient exceeds 90%, which proves that the method has excellent robustness and high precision, and provides a new solution for multi-source remote sensing data fusion.

Key words: Hough transform, semantic feature points, Line-CNN network, multi-modal data fusion

中图分类号: