[1] 周杨,徐青,罗向阳,等.网络空间测绘的概念及其技术体系的研究[J].计算机科学,2018,45(5): 1-7. [2] 施群山,蓝朝桢,徐青,等.面向卫星遥感影像检索定位的深度学习全局表征模型评估与分析[J].地球信息科学学报,2022,24(11): 2245-2263. [3] 黄高爽,周杨,胡校飞,等.图像地理定位研究进展[J].地球信息科学学报,2023,25(7): 1336-1362. [4] SHI Y,YU X,LIU L,et al.Accurate 3-DoF camera geo-localization via ground-to-satellite image matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(3): 2682-2697. [5] GOODFELLOW I,ABADIE J,MIRZA M,et al.Conditional generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Montréal:[s.n.],2014. [6] REGMI K,SHAH M.Bridging the domain gap for ground-to-aerial image matching[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Seoul: IEEE,2019: 470-479. [7] 孙彬.基于跨视角匹配的图像地理位置定位研究[D].深圳: 深圳大学,2019. [8] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Las Vega: IEEE,2016: 770-778. [9] YANG Hongji,LU Xiufan,ZHU Yingying.Cross-view geo-localization with layer-to-layer transformer[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems.[S.l.]:NeurIPS,2021. [10] ZHAO Jianwei,ZHAI Qiang,ZHAO Pengbo,et al.Co-visual pattern-augmented generative transformer learning for automobile geo-localization[J].Remote Sensing,2023,15(9): 2221. [11] ZHU Sijie,SHAH M,CHEN Chen.TransGeo: transformer is all you need for cross-view image geo-localization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans: IEEE,2022. [12] HE Kaiming,FAN Haoqi,WU Yuxin,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle: IEEE,2020. [13] CHEN TING,KORNBLITH S,NOROUZI M,et al.A simple framework for contrastive learning of visual representations[C]//Proceedings of 2020 International Conference on Machine Learning.[S.l.]:ICML,2020. [14] DEUSER F,HABEL K,OSWALD N.Sample4Geo: hard negative sampling for cross-view geo-localisation[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision.Paris: IEEE,2023. [15] WANG Tingyu,ZHENG Zhedong,YAN Chenggang,et al.Each part matters: local patterns facilitate cross-view geo-localization[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(2):867-879. [16] ZHU Y,YANG H,LU Y,et al.Simple,effective and general: a new backbone for cross-view image geo-localization[EB/OL].2023-11-28[2024-09-05].https://arxiv.org/abs/2302.01572. [17] WANG Ting,ZHENG Zhedong,ZHU Zunjie,et al.Learning cross-view geo-localization embeddings via dynamic weighted decorrelation regularization[EB/OL].[2024-09-05].https://arxiv.org/abs/2211.05296. [18] ZHU R,YANG M,YIN L,et al.UAV's status is worth considering: a fusion representations matching method for geo-localization[J].Sensors (Basel),2023,23(2): 720. [19] ZENG Zelong,WANG Zheng,YANG Fan,et al.Geo-localization via ground-to-satellite cross-view image retrieval[J].IEEE Transactions on Multimedia,2023,25: 2176-2188. [20] 张呈龙,周杨,胡校飞,等.MRGA-Mix:融合多级特征与关系感知全局注意力的视觉位置识别[J/OL].地球信息科学学报,1-20[2025-03-20].http://kns.cnki.net/kcms/detail/11.5809.P.20240402.1654.009.html. |