测绘通报 ›› 2025, Vol. 0 ›› Issue (7): 32-39.doi: 10.13474/j.cnki.11-2246.2025.0706

• 学术研究 • 上一篇    下一篇

SFR-YOLO:改进YOLOv8的无人机图像小目标检测算法

孙基源1, 纪松1, 高定1, 李凯2, 张芮莹1   

  1. 1. 信息工程大学, 河南 郑州 450001;
    2. 军事科学院系统科学研究院, 北京 100044
  • 收稿日期:2024-12-12 发布日期:2025-08-02
  • 通讯作者: 纪松。E-mail:jisong_chxy@163.com
  • 作者简介:孙基源(1995—),男,硕士生,主要从事遥感图像智能解译相关研究。E-mail:17836953603@139.com
  • 基金资助:
    国家自然科学基金(42371459);嵩山实验室项目(221100211000-4);河南省国家自然科学基金(222300420592)

SFR-YOLO: small target detection algorithm for UAV imagery based on improved YOLOv8

SUN Jiyuan1, JI Song1, GAO Ding1, LI Kai2, ZHANG Ruiying1   

  1. 1. Information Engineering University, Zhengzhou 450001, China;
    2. Institute f System Engineering, Academy of Military Sciences, Beijing 100044, China
  • Received:2024-12-12 Published:2025-08-02

摘要: 针对无人机图像中小目标像素占比少、特征易丢失,以及传统目标检测模型参数量大、难部署的问题,本文提出了一种基于改进YOLOv8的轻量化小目标检测算法SFR-YOLO。首先,设计了一个轻量化的共享细节增强检测头(SDCDH),它不仅通过共享卷积降低检测头参数量,还在共享层中引入细节增强卷积(DEConv),以增强细节特征表示能力;然后,使用增加浅层特征融合支路和删除深层卷积的加权双向特征金字塔网络(BIFPN),改进特征融合网络,以提高小目标检测性能;最后,设计了CRFA模块,结合空间注意力和感受野特征,提升了模型主干网络的特征提取能力。试验结果表明,SFR-YOLO在VisDrone2019数据集中,相对YOLOv8n算法mAP提升了3.8%,不仅小目标检测效果得以提升,而且满足了模型部署的要求;此外,通过SFR-YOLO在CARPK数据集上的迁移试验,进一步验证了本文方法的有效性。

关键词: 小目标检测, YOLOv8, 无人机图像, 轻量化

Abstract: Addressing the issues of small targets in drone imagery having a low pixel ratio,leading to easy loss of features,as well as the large parameter count and deployment challenges of traditional object detection models,this paper proposes a lightweight small object detection algorithm named SFR-YOLO based on an improved YOLOv8.Firstly,this paper introduces a lightweight Shared detail-enhanced convolution detection head (SDCDH),which not only reduces the number of parameters in the detection head by sharing convolutions but also enhances the representation of detailed features by introducing detail-enhanced convolution (DEConv) in the shared layers.Secondly,the feature fusion network is improved using a weighted bidirectional feature pyramid network (BIFPN) with added shallow feature fusion branches and the removal of deep convolution,which boosts the detection performance for small objects.Finally,this paper designs a CRFA module that combines spatial attention and receptive field features to enhance the feature extraction capability of the model's backbone network.Experimental results demonstrate that SFR-YOLO achieves a 3.8%improvement in mean average precision (mAP) compared to the YOLOv8n algorithm on the VisDrone2019 dataset,SFR-YOLO not only enhances the detection of small objects but also meets the requirements for model deployment.Additionally,transfer experiments of SFR-YOLO on the CARPK dataset further validating the effectiveness of the proposed method in this paper.

Key words: small target detection, YOLOv8, drone imagery, lightweight

中图分类号: