测绘通报 ›› 2025, Vol. 0 ›› Issue (10): 87-93.doi: 10.13474/j.cnki.11-2246.2025.1015

• 学术研究 • 上一篇    

融合GRNN神经网络的ZHD模型构建及其在中国区域PWV反演中的应用

吴昂道, 唐旭, 张骋   

  1. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044
  • 收稿日期:2025-03-31 发布日期:2025-10-31
  • 通讯作者: 唐旭。E-mail:Xu.Tang@nuist.edu.cn
  • 作者简介:吴昂道(1999-),男,硕士生,主要研究方向为GNSS气象学。E-mail:202312480181@nuist.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFE0208400)

GRNN-integrated ZHD modeling and its application in PWV retrieval over China

WU Angdao, TANG Xu, ZHANG Cheng   

  1. School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2025-03-31 Published:2025-10-31

摘要: 针对Saastamoinen模型依赖地表实测气压数据而多数GNSS站点缺乏气象仪导致对流层干延迟(ZHD)计算受限的问题,本文提出了基于广义回归神经网络(GRNN)的改进方法。通过融合掩星与探空站数据构建训练集,建立GRNN-ZHD预测模型,并结合中国地壳运动观测网络(CMONOC)的GNSS观测数据解算对流层总延迟(ZTD),构建反演大气可降水量(PWV)新模型。结果表明:在ZHD反演精度方面,GRNN模型的平均RMSE为15.23mm,较GPT3模型(28.64mm)提升约46.8%;在PWV反演方面,GRNN模型平均RMSE为5.17mm,优于GPT3模型的10.76mm(精度提升51.9%)。在20个验证站点中,GRNN模型在15个站点的PWV反演偏差低于7mm,而GPT3模型仅有3个。

关键词: Saastamoinen模型, 对流层干延迟, 广义回归神经网络, 大气可降水量

Abstract: To address the limitations of the Saastamoinen model in calculating zenith hydrostatic delay(ZHD)due to its reliance on ground-measured atmospheric pressure data and the lack of meteorological instruments at most GNSS stations, this study proposes an improved method based on a general regression neural network(GRNN).By integrating radio occultation data and radiosonde station observations to construct a training dataset, a GRNN-ZHD prediction model was developed.Combined with ZTD derived from GNSS observations of the Crustal Movement Observation Network of China(CMONOC), a novel model for retrieving precipitable water vapor(PWV)was established.The results demonstrate that the GRNN model achieves an average RMSE of 15.23 mm for ZHD retrieval, showing a 46.8% improvement compared to the GPT3 model(28.64 mm).For PWV retrieval, the GRNN model achieves an average RMSE of 5.17 mm, outperforming the GPT3 model's 10.76 mm (51.9% accuracy improvement).Among the 20 validation stations, the GRNN model maintains PWV retrieval deviations below 7 mm at 15 stations, whereas the GPT3 model achieves this threshold at only 3 stations.

Key words: Saastamoinen model, zenith hydrostatic delay, general regression neural network, precipitable water vapor

中图分类号: