测绘通报 ›› 2025, Vol. 0 ›› Issue (12): 121-125,162.doi: 10.13474/j.cnki.11-2246.2025.1221

• 技术交流 • 上一篇    

基于视觉基础模型优化的U-Net++遥感语义分割方法

陈忠超, 孙俊英, 谭登澳, 李娟, 成其换, 杨铭珂   

  1. 贵州省第二测绘院, 贵州 贵阳 550001
  • 收稿日期:2025-08-13 发布日期:2025-12-31
  • 通讯作者: 孙俊英。E-mail:183461315@qq.com
  • 作者简介:陈忠超(1993—),男,硕士,高级工程师,主要从事自然资源信息化建设与智能化研究工作。E-mail:1491074379@qq.com
  • 基金资助:
    人工智能遥感影像判别技术在耕地保护和自然资源管理中的应用课题研究项目(黔发改规划〔2023〕988号);石漠化治理成效遥感监测与决策关键技术研究(黔科合支撑〔2023〕一般175)

U-Net++ remote sensing semantic segmentation method optimized based on visual foundation models

CHEN Zhongchao, SUN Junying, TAN Deng'ao, LI Juan, CHENG Qihuan, YANG Mingke   

  1. The Second Surveying and Mapping Institude of Guizhou Province, Guiyang 550001, China
  • Received:2025-08-13 Published:2025-12-31

摘要: 为突破以往遥感语义分割对样本的高度依赖及多尺度特征融合瓶颈,本文提出了融合视觉基础模型SAM与U-Net++架构的遥感语义分割方法VF-UNet++,创新构建双流特征协同建模框架,设计双流特征交互融合机制实现跨尺度特征融合。同时针对遥感场景特性,提出了参数冻结与领域知识注入的适配策略,在有限样本条件下有效提升模型泛化能力。基于Inria Aerial Image Labeling Dataset的试验表明,VF-UNet++在召回率、F1得分及mIoU等指标上优于比对模型。本文方法有效解决了视觉基础模型在遥感领域的迁移适配难题,为低样本条件下的遥感智能解译提供了参考范式;同时突破全局语义与局部细节特征融合不充分的局限,实现复杂遥感场景下分割精度与模型稳健性的双重提升。

关键词: 遥感语义分割, 双流特征协同建模, 领域适应性优化, 通道注意力机制

Abstract: To break through the bottlenecks of high dependence on samples and multi-scale feature fusion in previous remote sensing semantic segmentation,this paper proposes a remote sensing semantic segmentation method VF-UNet++,which integrates the visual foundation model SAM with the U-Net++ architecture.This method innovatively constructs a dual-stream feature collaborative modeling framework and designs a dual-stream feature interactive fusion mechanism to achieve cross-scale feature fusion.Meanwhile,aiming at the characteristics of remote sensing scenarios,it proposes an adaptation strategy of parameter freezing and domain knowledge injection,which effectively improves the generalization ability of the model under the condition of limited samples.Experiments based on the Inria Aerial Image Labeling Dataset demonstrate that VF-UNet++ outperforms the comparison models in metrics such as recall,F1-score,and mIoU.This method effectively tackles the challenges in transferring and adapting visual foundation models to the remote sensing domain,offering a reference paradigm for intelligent remote sensing interpretation under low-sample conditions.Additionally,it overcomes the limitation of inadequate fusion between global semantic features and local detailed features,achieving a dual enhancement in segmentation accuracy and model robustness within complex remote sensing scenarios.

Key words: remote sensing semantic segmentation, dual-stream feature collaborative modeling, domain adaptation optimization, channel attention mechanism

中图分类号: