测绘通报 ›› 2018, Vol. 0 ›› Issue (8): 56-61.doi: 10.13474/j.cnki.11-2246.2018.0245

• 学术研究 • 上一篇    下一篇

多源遥感技术在土地利用分类中的应用

马腾1, 刘全明1, 孙红2   

  1. 1. 内蒙古农业大学水利与土木建筑工程学院, 内蒙古 呼和浩特 010018;
    2. 内蒙古自治区城镇供排水监测中心, 内蒙古 呼和浩特 010018
  • 收稿日期:2017-10-24 修回日期:2018-05-15 出版日期:2018-08-25 发布日期:2018-08-30
  • 作者简介:马腾(1982-),男,硕士,讲师,主要研究方向为农业、生态环境遥感。E-mail:mt19822005@163.com
  • 基金资助:
    国家自然科学基金(51569018)

Application of Multi-source Remote Sensing Technology in Land Use Classification

MA Teng1, LIU Quanming1, SUN Hong2   

  1. 1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China;
    2. Inner Mongolia Autonomous Region Water Supply and Drainage Monitoring Center of Towns, Huhhot 010018, China
  • Received:2017-10-24 Revised:2018-05-15 Online:2018-08-25 Published:2018-08-30

摘要: 为有效提高土地利用分类精度,研究多源遥感数据的分类方法,提出了利用多源遥感技术进行土地利用分类。对居民地、耕地、林地、水体、未利用土地等土地利用类型的光谱特征及微波散射特征进行了分析,将高分一号多光谱数据与RADARSAT-2数据相结合,利用决策树分类器实现了土地利用类型的划分,其总体分类精度达到96.6%。与高分一号数据最大似然分类及RADARSAT-2数据的Freeman-Durden三分量最大似然分类进行了精度比较,结果表明,多源遥感技术可实现数据的特征互补,其分类精度优于仅采用多光谱数据或微波数据的分类精度。

关键词: 微波遥感, 表面散射, 体散射, 二次散射, 多光谱遥感, 分类精度

Abstract: In order to improve the accuracy of land use classification and study multi-source remote sensing classification technology,the article analyzes the spectral characteristics and microwave characteristics of land use type such as residential area,arable land,forest,water and unused land.The multi-spectral data GF1 combine with microwave data RADARSAT-2,and the decision tree classifier is used for classifying land use type.The overall classification accuracy of multi-source classification method is 96.6%.The article compares the classification accuracies of the Freeman-Durden three-component method and the multi-spectral method combined maximum likelihood classifier with multi-source method.The results show the multi-source method can achieve complementary of features,and its accuracy is better than multi-spectral method or microwave method.

Key words: microwave remote sensing, surface scattering, volume scattering, secondary scattering, multi-spectral remote sensing, classification accuracy

中图分类号: