测绘通报 ›› 2018, Vol. 0 ›› Issue (8): 68-73.doi: 10.13474/j.cnki.11-2246.2018.0247

• 学术研究 • 上一篇    下一篇

利用共享单车大数据的城市骑行热点范围提取

杨永崇1, 柳莹1, 李梁2   

  1. 1. 西安科技大学测绘科学与技术学院, 陕西 西安 710054;
    2. 西安市交通规划设计研究院, 陕西 西安 710082
  • 收稿日期:2017-12-26 修回日期:2018-06-21 出版日期:2018-08-25 发布日期:2018-08-30
  • 作者简介:杨永崇(1966-),男,博士,教授,主要从事地理空间信息可视化技术与方法的教学、科研及应用方面的工作。E-mail:yangyongch@163.com

Urban Cycling Hot Spot Extraction Based on Sharing-bikes' Big Data

YANG Yongchong1, LIU Ying1, LI Liang2   

  1. 1. College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China;
    2. Xi'an Traffic Planning and Design Institute, Xi'an 710082, China
  • Received:2017-12-26 Revised:2018-06-21 Online:2018-08-25 Published:2018-08-30

摘要: 共享单车成为市民出行不可或缺的一种代步方式,也对城市交通运行管理和规划发展带来压力和挑战。本文利用Python程序获取了2017年9月20日ofo单车的全天候位置数据,通过ArcGIS传统分析工具进行了西安市用户骑行行为的时空间特征分析,提取了用户出行OD模型及城市骑行热点路段。结果发现,在城市轨道交通、城市产业分配、医院学校分布及时间维度的影响下,骑行存在不同空间特征。基于大数据分析提取热点,利用可视化表达数据集合与相关城市数据集综合分析,可为集中规划非机动车设施、更好地优化城市空间布局提供新思路。

关键词: 共享单车数据, 热点提取, 贪心算法, 网络分析, 非机动车设施规划

Abstract: Under the dual drive of capital and scientific strength,shared bicycles suddenly break into our city and develop rapidly,becoming a part of the urban landscape and an indispensable way of transportation for citizens.However,in the same time,it also brings severe pressure and challenge to the urban traffic operation management and planning development.In this paper,the location data of ofo bicycles in September 20,2017 was obtained by means of Python program.Then,using the ArcGIS traditional analysis tools,the spatial-temporal feature of riding behavior for Xi'an users were analyzed,the hot spots of urban riding were extracted,and the user travel OD model was developed.The results indicated that riding lines had different spatial characteristics under the influence of urban rail transportation,urban industrial distribution,hospital and school distribution and time dimension.The hot spots derived by big data analysis collaborated with the results of comprehensive analysis of visual expression data sets as well as related city data sets makes a new way of thinking for the centralized planning of non-motorvehicle facilities and the optimization for urban spatial layout.

Key words: sharing-bikes' data, hot spot extraction, greedy algorithm, network analysis, planning bike lanes

中图分类号: