[1] SCHAEPMAN M E. Spectrodirectional remote sensing:from pixels to processes[J]. International Journal of Applied Earth Observation and Geoinformation, 2007,9(2):204-223. [2] LU D, WENG Q. A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing, 2007,28(5):823-870. [3] 张锦水, 潘耀忠, 韩立建, 等. 光谱与纹理信息复合的土地利用/覆盖变化动态监测研究[J]. 遥感学报, 2007,11(4):500-510. [4] 朱爽, 崔有祯, 张锦水. 利用复合光谱纹理特征进行城市边缘区不透水层提取[J]. 测绘通报, 2016(11):26-30. [5] XU S, PEDDLE D R, COBURN C A. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a rocky mountain watershed[J]. Canadian Journal of Remote Sensing, 2008,34(3):245-258. [6] PACHECO A, MCNAIRN H. Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping[J]. Remote Sensing of Environment, 2010,114(10):2219-2228. [7] KATRA I, LANCASTER N. Surface-sediment dynamics in a dust source from spaceborne multispectral thermal infrared data[J]. Remote Sensing of Environment, 2008,112(7):3212-3221. [8] 朱爽, 张锦水. 农作物遥感变化检测识别研究进展[J]. 中国农业资源与区划, 2015(7):159-168. [9] ZHU S, ZHANG J S, SHUAI G Y, et al. Support vector domain description model to map specific land cover with optimal parameters determined from window-based validation set[C]//2017 IEEE International Geoscience and Remote Sensing Symposium.[S.l.]:IEEE, 2017:4774-4777. [10] SOMERS B, ASNER G P, TITS L, et al. Endmember variability in spectral mixture analysis:a review[J]. Remote Sensing of Environment, 2011,115(7):1603-1616. [11] POWELL R L, ROBERTS D A, DENNISON P E, et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis:manaus, Brazil[J]. Remote Sensing of Environment, 2007,106(2):253-267. [12] WANG L, JIA X. Integration of soft and hard classifications using extended support vector machines[J]. Geoscience and Remote Sensing Letters, 2009,6(3):543-547. [13] 胡潭高, 潘耀忠, 张锦水, 等. 基于线性光谱模型和支撑向量机的软硬分类方法[J]. 光谱学与光谱分析, 2011,31(2):508-511. [14] 张锦水, 何春阳, 潘耀忠, 等. 基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J]. 遥感学报, 2006,10(1):49-57. [15] 朱爽, 张锦水. 样本特征对参数/非参数分类器分类精度的影响分析[J]. 遥感技术与应用, 2016(4):748-755. [16] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66(3):247-259. [17] FOODY G M, MATURE A. The use of small training sets containing mixed pixels for accurate hard image classification:training on mixed spectral responses for classification by a SVM[J]. Remote Sensing of Environment, 2006, 103(2):179-189. [18] SONG X F, DUAN Z J, JIANG X G. Comparison of artificial neural networks and support vector machine classifiers for land cover classification in northern China using a SPOT-5 HRG image[J]. International Journal of Remote Sensing, 2012,33(10):3301-3320. [19] GALLEGO F J. Remote sensing and land cover area estimation[J]. International Journal of Remote Sensing, 2004,25(15):3019-3047. [20] ZHANG L,DU B,ZHONG Y. Hybrid detectors based on selective endmembers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6):2633-2646. [21] 王凯, 赵军, 朱国锋, 等. 基于GF-1遥感数据决策树与混合像元分解模型的冬小麦种植面积早期估算[J]. 遥感技术与应用, 2018,33(1):158-167. [22] 赵英时. 遥感应用分析原理与方法[M]. 北京:科学出版社, 2003. [23] CHO M A, DEBBA P, MATHIEU R, et al. Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach:canopy-level analysis[J]. IEEE Transactions on Geoscience and Remote Sensing 2010,48(11):4133-4142. [24] 李慧, 张金区, 曹阳, 等. 端元可变非线性混合像元分解模型[J]. 测绘学报, 2016,45(1):80-86. [25] 吴柯, 张良培, 李平湘. 一种端元变化的神经网络混合像元分解方法[J]. 遥感学报, 2007,11(1):20-26. [26] VILLA A, CHANUSSOT J, BENEDIKTSSON J A, et al. Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution[J]. IEEE Journals of Selected Topics in Signal Processing, 2011,5(3):521-533. |