测绘通报 ›› 2019, Vol. 0 ›› Issue (12): 137-141.doi: 10.13474/j.cnki.11-2246.2019.0403

• 技术交流 • 上一篇    下一篇

结合非线性贝叶斯反演算法的油田储层参数反演

张旭东, 符华年, 杨崇   

  1. 宁波市测绘设计研究院, 浙江 宁波 315042
  • 收稿日期:2019-07-16 修回日期:2019-08-22 发布日期:2020-01-03
  • 通讯作者: 杨崇。E-mail:swjtu_yc@163.com E-mail:swjtu_yc@163.com
  • 作者简介:张旭东(1976-),男,硕士,高级工程师,主要研究方向为大地测量、地面沉降监测以及海洋测绘。E-mail:zxd162@163.com
  • 基金资助:
    宁波市科技局软科学课题(2017A10066)

Oilfield reservoir parameter inversion based on nonlinear Bayes inversion algorithms

ZHANG Xudong, FU Huanian, YANG Chong   

  1. Ningbo Institute of Surveying and Mapping, Ningbo 315042, China
  • Received:2019-07-16 Revised:2019-08-22 Published:2020-01-03

摘要: 基于地球物理反演算法,利用地表沉降信息快速获取油田储层状态信息,对于油田储层安全的实时监控具有重要意义。目前国内外对油田储层参数反演的研究相对较少,因此本文以典型的因石油开采引起地表沉降的辽河盘锦地区作为研究区域,以InSAR沉降监测结果作为观测数据,以Okada模型作为反演模型,首次将非线性贝叶斯反演算法引入到油田储层参数反演中。在试验过程中,发现油田地下存在不止一个油层,首次将双Okada模型引入到油田储层参数反演中。试验表明:①非线性贝叶斯反演算法不仅能够获取模型参数的最优值,同时可以对反演结果的不确定性做出解释。②与单源Okada模型相比,双Okada模型更符合该地区油田储层参数变化与地表沉降之间的映射关系,基于双Okada模型反演得到的油田储层参数更可靠。

关键词: 非线性贝叶斯反演算法, 地表沉降, 油田储层参数, 单源Okada模型, 双Okada模型

Abstract: It is of great significance for real-time monitoring of reservoir safety to use surface subsidence information to quickly acquire reservoir status information based on geophysical inversion algorithm.At present, there are few studies on reservoir parameter inversion at home and abroad. Therefore, this paper takes Panjin area of Liaohe which is a typical area of surface subsidence caused by oil exploitation as the research area,InSAR subsidence monitoring results as observation data, Okada model as inversion model, and introduces the nonlinear Bayes inversion algorithm into the inversion of reservoir parametersin oilfield for the first time.During the experiment, more than one reservoir was found in the oilfield, so the double Okada model was introduced into the inversion of reservoir parameters in oilfield for the first time.Experiments show that:(1) The nonlinear Bayes inversion algorithm can not only obtain the optimal inversion parameters, but also explain the uncertainty of inversion results. (2) Compared with the single-source Okada model, the double Okada model is more in line with the mapping relationship between reservoir parameters change and surface subsidence, and the reservoir parameters obtained from double Okada model are more reliable.

Key words: the nonlinear Bayes inversion algorithm, surface subsidence, oilfield reservoir parameter, single-source Okada model, double Okada model

中图分类号: