测绘通报 ›› 2019, Vol. 0 ›› Issue (9): 82-84,89.doi: 10.13474/j.cnki.11-2246.2019.0290

• 技术交流 • 上一篇    下一篇

矿区土壤重金属Pb、Cd污染状况高光谱分类建模

钱佳1,2, 郭云开1,2, 章琼1,2, 蒋明1,2   

  1. 1. 长沙理工大学交通运输工程学院, 湖南 长沙 410014;
    2. 长沙理工大学测绘遥感 应用技术研究所, 湖南 长沙 410076
  • 收稿日期:2019-02-26 出版日期:2019-09-25 发布日期:2019-09-28
  • 作者简介:钱佳(1996-),男,硕士生,主要从事土壤环境遥感监测研究工作。E-mail:qianjia1996@163.com
  • 基金资助:
    国家自然科学基金(41671498;41471421)

Pollution classification of heavy metals Pb and Cd in mining area based on hyperspectral

QIAN Jia1,2, GUO Yunkai1,2, ZHANG Qiong1,2, JIANG Ming1,2   

  1. 1. School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410014, China;
    2. Institute of Surveying and Mapping Remote Sensing Application Technology, Changsha University of Science & Technology, Changsha 410076, China
  • Received:2019-02-26 Online:2019-09-25 Published:2019-09-28

摘要: 针对矿区土壤重金属含量高度变异性及样本不均衡导致重金属污染状况分类误差较大的问题,本文在光谱预处理及光谱变换基础上,采用主成分分析(PCA)对光谱进行降维处理,并通过SMOTE算法生成虚拟样本均衡各污染等级样本,最后应用随机森林(RF)对Cd、Pb进行回归与分类。研究结果表明:定量反演重金属Pb、Cd含量精度很低;在定性分析试验中对降维前光谱样本应用SMOTE算法,土壤重金属Pb、Cd污染等级分类精度较原始样本分类精度均有较大提升,且少数类别误判率也降低明显。其研究为大面积监测矿区土壤重金属污染状况提供了一种有效、精确的方法。

关键词: SMOTE算法, 高光谱, 土壤重金属, 随机森林, 分类

Abstract: In view of the high variability of soil heavy metal content and the imbalanced samples lead to the high classification error of heavy metal pollution in mining area.Based on the spectral preprocessing and spectral transformation, this paper uses principal component analysis (PCA) for spectral dimension, and applies SMOTE algorithm to generate virtual samples balance each pollution grade sample, and heavy metal Cd and Pb are regressed and classified by random forest(RF). The results show that the quantitative inversion precision of heavy metals Pb and Cd is bad. In the qualitative analysis experiment, SMOTE algorithm was applied to spectral samples before dimension reduction. The classification accuracy of Pb and Cd pollution levels in soil was greatly improved compared with that of the original samples, and the misjudgment rate of a few categories was also significantly decreased. The study provides an effective and accurate method for monitoring soil heavy metal pollution in a large area.

Key words: SMOTE algorithm, hyper-spectral, soil heavy metal, random forest, classification

中图分类号: