测绘通报 ›› 2021, Vol. 0 ›› Issue (10): 78-82.doi: 10.13474/j.cnki.11-2246.2021.309

• 学术研究 • 上一篇    下一篇

剔除无人机影像BRISK特征误匹配点对算法

何志伟1,2, 唐伯惠2,3, 王涛1, 王晓红4, 于伯华3, 李闯5, 邓仕雄6   

  1. 1. 贵州省测绘产品质量监督检验站, 贵州 贵阳 550004;
    2. 昆明理工大学, 云南 昆明 650093;
    3. 中国 科学院地理科学与资源研究所, 北京 100101;
    4. 贵州大学林学院, 贵州 贵阳 550025;
    5. 烟台职业学院, 山东 烟台 264670;
    6. 贵州水利水电职业技术学院, 贵州 贵阳 551400
  • 收稿日期:2020-08-28 出版日期:2021-10-25 发布日期:2021-11-13
  • 通讯作者: 王涛。E-mail:wangt.07b@igsnrr.ac.cn
  • 作者简介:何志伟(1993-),男,博士生,主要从事定量遥感和遥感数据处理与应用方面的研究。E-mail:1073001200@qq.com
  • 基金资助:
    国家自然科学基金(41171079)

An algorithm for eliminating mismatching point pairs of BRISK features in UAV images

HE Zhiwei1,2, TANG Bohui2,3, WANG Tao1, WANG Xiaohong4, YU Bohua3, LI Chuang5, DENG Shixiong6   

  1. 1. Surveying and Mapping Product Quality Supervision and Inspection Station of Guizhou Provincial, Guiyang 550004, China;
    2. Kunming University of Science and Technology, Kunming 650093, China;
    3. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    4. College of Forestry, Guizhou University, Guiyang 550025, China;
    5. Yantai Vocational College, Yantai 264670, China;
    6. Guizhou Vocational and Technical College of Water Resources and Hydropower, Guiyang 551400, China
  • Received:2020-08-28 Online:2021-10-25 Published:2021-11-13

摘要: 针对BRISK特征检测算法在遥感影像中匹配时同名点对冗余度高和全局性差等特点,考虑BRISK特征检测算法能获取大量无人机遥感影像特征点,Delaunay三角网算法能够利用影像的BRISK特征点的粗匹配点对构建三角网,本文综合两种算法的优点,提出了一种结合BRISK特征检测算法和Delaunay三角网算法的剔除无人机遥感影像误匹配点对方法。该方法利用两张影像的BRISK粗匹配特征点构建Delaunay三角网,利用遍历两张影像三角网中的三角形相似度剔除错误匹配点对,并利用摄影不变量原理进一步剔除误匹配点对,提高了两张影像的精度;对比分析了Delaunay三角网的射影不变量算法,RANSAC算法分别剔除原始影像组、加入椒盐噪声影像组及旋转影像组的BRISK特征误匹配点对的效果。试验结果表明,3组影像分别利用结合BRISK特征和Delaunay三角网的射影不变量算法的无人机遥感影像匹配方法获得的正确特征匹配点对冗余度低、全局性优。

关键词: 无人机遥感影像, BRISK特征, RANSAC算法, Delaunay三角网, 摄影不变量, 三角形相似度

Abstract: In view of the high redundancy and poor globality of the same-name point pairs when the BRISK feature detection algorithm matches in remote sensing images, this paper considers that the BRISK feature detection algorithm can obtain a large number of UAV image feature points, and the Delaunay triangulation algorithm can use the rough matching point pairs of the BRISK feature points of the image construct a triangulation network. Combining the advantages of the two algorithms, a method combining the BRISK feature detection algorithm and the Delaunay triangulation algorithm to eliminate mismatched point pairs of UAV images is proposed. This method uses the BRISK rough matching feature points of the two images to construct the Delaunay triangulation, uses the triangle similarity in the traversal of the two images to eliminate the mismatching point pairs, and then uses the photographic invariant principle to further eliminate the wrong matching point pairs, improving the accuracy of the image matching. This paper compares and studies the effect of the projective invariant algorithm of Delaunay triangulation and the RANSAC algorithm to eliminate the original image group, adds the pepper-salt noise image group and the rotated image group to the effect of the BRISK feature mismatch point pairs. The experimental results show that the three sets of images respectively use the UAV remote sensing image matching method combining the BRISK feature and the Delaunay triangulation's projective invariant algorithm to obtain the correct feature matching points with low redundancy and excellent global performance.

Key words: UAV remote sensing images, BRISK feature, RANSAC algorithm, Delaunay tri-angulation, projective invariants, triangle similarity

中图分类号: