测绘通报 ›› 2021, Vol. 0 ›› Issue (4): 8-12.doi: 10.13474/j.cnki.11-2246.2021.0102

• 生态环境动态监测 • 上一篇    下一篇

一种改进的融合多指标荒漠化等级分类方法

王树祥1,2, 韩留生1,2, 杨骥2, 李勇2, 赵倩1,2, 刘杨晓月2, 吴昊3   

  1. 1. 山东理工大学建筑工程学院, 山东 淄博 255000;
    2. 广东省科学院广州地理研究所, 广东 广州 510070;
    3. 淄博市勘察测绘研究院有限公司, 山东 淄博 255000
  • 收稿日期:2020-10-26 发布日期:2021-04-30
  • 通讯作者: 韩留生。E-mail:hanls@sdut.edu.cn
  • 作者简介:王树祥(1995-),男,硕士生,主要研究方向为环境遥感、定量遥感。E-mail:1039735316@qq.com
  • 基金资助:
    广东省科学院建设国内一流研究机构行动专项资金(2019GDASYL-0103003);国家重点研发计划(2017YFB0503500);广东省遥感与地理信息系统应用重点实验室开放基金(2017B030314138);山东理工大学青年教师发展支持计划(4072-115016);广东省引进创新创业团队项目(2016ZT06D336);广东省科学院实施创新驱动发展能力建设专项(2019GDASYL-0103001);博士后创新人才支持计划(BX20200100);山东省自然科学基金(ZR2020MD018&ZR2020MD015)

An improved method of combining multi-indicator desertification classification

WANG Shuxiang1,2, HAN Liusheng1,2, YANG Ji2, LI Yong2, ZHAO Qian1,2, LIU Yangxiaoyue2, WU Hao3   

  1. 1. School of Civil Architectural Engineering, Shandong University of Technology, Zibo 255000, China;
    2. Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China;
    3. Zibo City Survey and Mapping Research Institute Co., Ltd., Zibo 255000, China
  • Received:2020-10-26 Published:2021-04-30

摘要: 土地荒漠化等级分类是荒漠化监测的重要内容,也是土地荒漠化综合治理、科学防护的基础。针对植被稀疏及干旱区土地荒漠化提取异常的问题,本文选择干旱/半干旱的科尔沁区为试验区,以2005、2010和2015年3期的中高分辨率Landsat遥感影像为数据源,基于大量的样本统计分析,提出了一种融合植被覆盖度(FVC)、去土壤植被指数(MSAVI)、增强性植被指数(EVI)3种指标的荒漠化提取模型,并将之与传统植被覆盖度指标提取结果进行了对比分析。研究结果表明,相较于单一植被指数反演方法,本文提出的算法分类精度更高,尤其针对干旱/半干旱地区,该融合植被指数法具有更好的适用性和稳健性。该方法为荒漠化评价体系的建立提供了新的思路,为土地荒漠化防护与治理提供了辅助决策支撑。

关键词: 荒漠化, 植被覆盖度, 植被指数, Landsat, 决策树分类

Abstract: The classification of land desertification is an important part of desertification monitoring, and it is also the basis for comprehensive management and scientific protection of land desertification. Aiming at the problem of abnormal extraction of land desertification in arid areas, this paper selects the arid/semi-arid Horqin area as the experimental area. The medium-and high-resolution Landsat remote sensing images of 2005, 2010 and 2015 are used as the data sources. Based on a large number of statistical analysis of samples, a desertification extraction model that integrates vegetation coverage(FVC), modified soil adjusted vegetation index(MSAVI) and the enhanced vegetation index(EVI) is put foward, which is compared with the extraction results of traditional vegetation coverage indicators. The research results show that compared with the single vegetation index retrieval method, the algorithm proposed in this paper has higher classification accuracy, especially for arid/semi-arid areas, the method of fusion vegetation index has better applicability and robustness. This method provides new ideas for the establishment of the desertification evaluation system, and provides auxiliary decision support for the protection and management of land desertification.

Key words: desertification, vegetation coverage, vegetation index, Landsat, decision tree classification

中图分类号: