测绘通报 ›› 2021, Vol. 0 ›› Issue (5): 20-24.doi: 10.13474/j.cnki.11-2246.2021.0135

• 时空大数据分析 • 上一篇    下一篇

时空融合技术在区域地表覆盖时序分类中的应用

古春霞1, 李大成1,2   

  1. 1. 太原理工大学矿业工程学院, 山西 太原 030024;
    2. 高分辨率对地观测系统山西数据与应用中心, 山西 晋中 030600
  • 收稿日期:2021-02-10 修回日期:2021-03-29 发布日期:2021-05-28
  • 通讯作者: 李大成。E-mail:daesungli@163.com
  • 作者简介:古春霞(1996-),女,硕士生,研究方向为遥感信息处理与应用。E-mail:guchunxia1996@163.com
  • 基金资助:
    基于卫星城市建设典型地物要素变化检测技术项目(06-Y20A17-9001-17/18)

Application of spatio-temporal fusion technology in time series classification of regional land cover

GU Chunxia1, LI Dacheng1,2   

  1. 1. College of Mining Technology of Taiyuan, University of Technology, Taiyuan 030024, China;
    2. High Resolution of the Earth Observation System Shanxi Data and Application Center, Jinzhong 030600, China
  • Received:2021-02-10 Revised:2021-03-29 Published:2021-05-28

摘要: 由于中高分辨率遥感影像数据时序性不强,分类过程中无法准确记录地物的时序特征。为增加地物时序变化特征,本文使用时空融合模型重建高时序高分辨率遥感影像,分析加入时相特征对分类结果的影响。以河北省石家庄市中部地区为例,本文采用3种时空融合模型重建高时序的30 m分辨率的遥感影像,增加影像时序分类特征,采用随机森林对年度重建时序影像分类,分析不同重建时序影像数量和不同时间跨度对分类结果的影响。试验表明,通过重建年度时序影像分类比单一影像分类精度增强;分类精度随着时序影像数量增加而增大,当时序影像数量选定为12景,也就是1月1景时,分类精度趋于稳定;不同时间段对分类结果影像程度不同,引入植被变化期间的时序影像,分类精度最高。

关键词: 时空融合, 数据重建, 时序分类, 随机森林, 精度评定

Abstract: Due to the low time series of medium and high-resolution remote sensing image data, the time series characteristics of ground objects cannot be accurately recorded during the classification process. In order to increase the temporal change characteristics of ground features, the study uses the spatio-temporal fusion model to reconstruct high-sequence and high-resolution remote sensing images, and analyzes the influence of adding temporal features on the classification results. Taking the central area of Shijiazhuang City, Hebei Province as an example, the study uses three spatiotemporal fusion models to reconstruct high-time sequence 30-meter resolution remote sensing images to add time series classification features. This study uses random forests to classify annual reconstructed time series images, and analyzed the impact of different number of reconstructed images and different time spans on the classification results. Experiments show that the accuracy of image classification by reconstructing annual time series is better than that of single image. The classification accuracy increases with the number of time series images, when the number of images is selected as 12 scenes (one scene per month), the classification accuracy tends to be stable. And different time periods have different influence on classification results. With the introduction of imagery during vegetation change, the classification accuracy is the highest.

Key words: spatio-temporal fusion, data reconstruction, time series classification, random forest, accuracy evaluation

中图分类号: