测绘通报 ›› 2021, Vol. 0 ›› Issue (8): 22-27.doi: 10.13474/j.cnki.11-2246.2021.0234
闫坤1,2,3, 张志华1,2,3, 颜鲁春4
收稿日期:
2020-08-24
出版日期:
2021-08-25
发布日期:
2021-08-30
通讯作者:
张志华。E-mail:43447077@qq.com
作者简介:
闫坤(1995-),男,硕士生,研究方向为基于探地雷达的公路病害检测。E-mail:2785757235@qq.com
基金资助:
YAN Kun1,2,3, ZHANG Zhihua1,2,3, YAN Luchun4
Received:
2020-08-24
Online:
2021-08-25
Published:
2021-08-30
摘要: 为减弱因地形起伏造成的探地雷达数据间的能量差异,保证探地雷达图像解译和识别的准确性,本文提出了一种正则化K-SVD字典学习和Hampel滤波算法相结合的探地雷达数据重建方法。试验采用正则化K-SVD字典学习对探地雷达信号进行能量均衡,利用Hampel滤波算法剔除均衡后的信号异常值,并对均衡后的信号进行二维可视化,从而完成探地雷达图像重建。对比试验表明,本文方法不但可以均衡原始的探地雷达信号,而且其均衡后的信号更加符合探地雷达信号传播规律,可以保证单道数据信号的质量;其重建的图像效果更好,在探地雷达图像重建方面具有较好的实用价值。
中图分类号:
闫坤, 张志华, 颜鲁春. 结合正则化K-SVD和Hampel滤波的探地雷达数据重建[J]. 测绘通报, 2021, 0(8): 22-27.
YAN Kun, ZHANG Zhihua, YAN Luchun. Ground penetrating radar data reconstruction combined with regularized K-SVD and Hampel filter[J]. Bulletin of Surveying and Mapping, 2021, 0(8): 22-27.
[1] HARRY M. Ground penetrating radar:theory and applica-tions[M]. Netherlands:Elsevier, 2011. [2] TORBAGHAN M E, LI W, METJE N, et al. Automated detection of cracks in roads using ground penetrating radar[J]. Journal of Applied Geophysics, 2020, 179:104-118. [3] TONG Z, YUAN D, GAO J, et al. Pavement-distress detection using ground-penetrating radar and network in networks[J]. Construction and Building Materials, 2020, 233:117352-117363. [4] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322. [5] JAFARI M G, PLUMBLEY M D. Fast dictionary learning for sparse representations of speech signals[J]. IEEE Journal of Selected Topics in Signal Process, 2011, 5(5):1025-1031. [6] KOKIOPOULOU E, FROSSARD P. Semantic coding by supervised dimensionality reduction[J]. IEEE Transactions on Multimedia, 2008, 10(5):806-818. [7] PLUMBLEY M D, BLUMENSATH T, DAUDET L, et al. Sparse representations in audio and music:from coding to source separation[J]. Proceedings of the IEEE, 2010, 98(6):995-1005. [8] LI W, LIANG J, WU Q, et al. An efficient face classifica-tion method based on shared and class-specific dictionary learning[C]//Proceedings of IEEE International Conference on Image Processing (ICIP).[S.l.]:IEEE, 2015:2596-2600. [9] KE H, AVIYENTE S. Sparse representation for signal classification[C]//Proceedings of the 20th Conference on Advances in Neural Information Processing Systems. Vancouver:[s.n.], 2006:609-616. [10] MAIRAL J, BACH F, Ponce J, et al. Discriminative learned dictionaries for local image analysis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2008:1-8. [11] ZHANG G, PORIKLI F, SUN H, et al. Cost-sensitive joint feature and dictionary learning for face recognition[J]. Neurocomputing, 2020, 391:177-188. [12] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227. [13] AWATE S P, DIBELLA E V R. Spatiotemporal dictionary learning for undersampled dynamic MRI reconstruction via joint frame-based and dictionary-based sparsity[C]//Proceedings of the 9th IEEE International Symposium on Biomedical Imaging (ISBI).[S.l.]:IEEE, 2012:318-321. [14] WANG J, LIAO X, LI J, et al. Single image super-resolution based on incoherent dictionary learning[C]//Proceedings of the 9th International Conference on Software Engineering and Service Science (ICSESS).[S.l.]:IEEE, 2018:555-558. [15] IROFTI P, Dumitrescu B. Regularized algorithms for dictionary learning[C]//Proceedings of International Conference on Communications (COMM).[S.l.]:IEEE, 2016:439-442. [16] DAI W, XU T, WANG W. Simultaneous codeword optimiza-tion (SimCO) for dictionary update and learning[J]. IEEE Transactions on Signal Processing, 2012, 60(12):6340-6353. [17] KUANG Y, ZHANG L, YI Z. An adaptive rank-sparsity K-SVD algorithm for image sequence denoising[J]. Pattern Recognition Letters, 2014, 45:46-54. [18] ZHOU Y, ZHAO H, SHANG L, et al. Immune K-SVD algorithm for dictionary learning in speech denoising[J]. Neurocomputing, 2014, 137:223-233. [19] YANG J, ZHANG X, PENG W, et al. A novel regularized K-SVD dictionary learning based medical image super-resolution algorithm[J]. Multimedia Tools and Applications, 2016, 75(21):13107-13120. [20] DUMITRESCU B, IROFTI P. Regularized K-SVD[J]. IEEE Signal Processing Letters, 2017, 24(3):309-313. [21] BHOWMIK S, JELFS B, ARJUNAN S P, et al. Outlier removal in facial surface electromyography through Hampel filtering technique[C]//Proceedings of IEEE Life Sciences Conference (LSC).[S.l.]:IEEE, 2017:258-261. |
[1] | 王艳军, 林云浩, 王书涵, 李少春, 王孟杰. OSM辅助车载LiDAR点云三维道路边界精细提取[J]. 测绘通报, 2022, 0(7): 18-25. |
[2] | 柳林, 孙毅, 李万武. 基于CNN海上钻井平台检测模型的构建及训练算法分析[J]. 测绘通报, 2022, 0(7): 26-32,99. |
[3] | 孔瑞瑶, 谢涛, 马明, 孔瑞林. CatBoost模型在水深反演中的应用[J]. 测绘通报, 2022, 0(7): 33-37. |
[4] | 温雨笑, 吕杰, 马庆勋, 张鹏, 徐汝岭. 高光谱和LiDAR联合反演森林生物量研究[J]. 测绘通报, 2022, 0(7): 38-42. |
[5] | 江泽霖, 邓健, 栾海军, 李兰晖. 基于逐日夜间灯光遥感的新冠肺炎疫情变化信息快速提取——以北京市为例[J]. 测绘通报, 2022, 0(7): 43-48. |
[6] | 郑艳, 何欢, 卜丽静, 金鑫. 自相似性和边缘保持分解的超分辨率重建算法[J]. 测绘通报, 2022, 0(7): 54-59. |
[7] | 冉崇宪, 李森磊. 利用无人机多光谱影像提取树冠信息[J]. 测绘通报, 2022, 0(7): 112-117. |
[8] | 刘立, 董先敏, 刘娟, 文学虎. 人机融合智能的遥感解译生产新方法[J]. 测绘通报, 2022, 0(7): 118-123,137. |
[9] | 艾敏, 景慧, 田禹东, 郭兰勤, 裴渊杰. 近20年哈尔滨市呼兰区土地利用覆盖变化及驱动分析[J]. 测绘通报, 2022, 0(7): 124-128. |
[10] | 刘玉贤, 阮明浩, 闫臻. 一种基于机载激光点云的门型电塔精确提取方法[J]. 测绘通报, 2022, 0(7): 129-133. |
[11] | 刘国超, 彭卫平, 杨水华, 胡周文. 地质雷达+三维测量内窥镜的城市道路病害检测与应用[J]. 测绘通报, 2022, 0(7): 134-137. |
[12] | 刘小玉, 刘扬, 杜明义, 张敏, 贾竞珏, 杨恒. 基于DeeplabV3+的建筑垃圾堆放点识别[J]. 测绘通报, 2022, 0(4): 16-19,43. |
[13] | 李佳豪, 周吕, 马俊, 杨飞, 咸凌霄. 利用PS-InSAR技术进行城市地铁沿线形变监测与机理分析[J]. 测绘通报, 2022, 0(4): 20-25. |
[14] | 师芸, 石龙龙, 牛敏杰, 赵侃. 基于单阶段实例分割网络的黄土滑坡多任务自动识别[J]. 测绘通报, 2022, 0(4): 26-31. |
[15] | 窦世卿, 陈治宇, 徐勇, 郑贺刚, 苗林林, 宋莹莹. 基于多特征融合与典型降维方法的高光谱影像分类[J]. 测绘通报, 2022, 0(4): 32-36,50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||