测绘通报 ›› 2022, Vol. 0 ›› Issue (1): 116-120.doi: 10.13474/j.cnki.11-2246.2022.0021

• 技术交流 • 上一篇    下一篇

高分辨率影像融合算法对滨海湿地土地利用分类精度的影响

高雨1, 胡召玲1, 樊茹2   

  1. 1. 江苏师范大学地理测绘与城乡规划学院, 江苏 徐州 221116;
    2. 61175部队, 江苏 南京 222000
  • 收稿日期:2021-06-12 修回日期:2021-12-15 发布日期:2022-02-22
  • 通讯作者: 胡召玲。E-mail:huzhaoling@jsnu.edu.cn
  • 作者简介:高雨(1997-),女,硕士,主要研究方向为遥感信息提取。E-mail:1528501043@qq.com
  • 基金资助:
    国家自然科学基金(52074133);江苏师范大学研究生科研实践创新计划(2021XKT0085)

Effect of high-resolution image fusion algorithm on the classification precision of land utilization in coastal wetland

GAO Yu1, HU Zhaoling1, FAN Ru2   

  1. 1. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China;
    2. Troops 61175, Nanjing 222000, China
  • Received:2021-06-12 Revised:2021-12-15 Published:2022-02-22

摘要: 针对融合算法对影像分类精度具有明显影响的问题,本文选择连云港海岸带埒子河口滨海湿地为研究区,以GF-1卫星影像为数据源,首先分别使用Gram-Schmidt算法、PCA算法及Brovey算法进行影像融合。然后在eCognition软件平台上,基于面向对象多尺度分割技术,利用随机森林算法对影像进行土地利用分类,并对分类结果进行精度评价。试验结果表明,不同融合算法影像融合效果明显不同,其中,Gram-Schmidt算法融合后的影像质量最好,且分类精度最高;Brovey融合算法对植被和水体有较好的光谱保真性,并且改变波段组合后分类精度有明显提高;PCA算法在3种融合算法中精度最低。

关键词: 影像融合, 土地利用分类, 面向对象, 随机森林, 精度评价

Abstract: Aiming at the problem that the fusion algorithm has a significant impact on the accuracy of image classification, this paper chooses the coastal wetland of Lianyungang Liezi Estuary coastal zone as the research area, and GF-1 satellite image is used as data source. Three fusion algorithms, Gram-Schmidt, PCA and Brovey are used to fuse images. After that, on the eCognition software platform, based on the object-oriented multi-scale segmentation technology, the image is classified by random forest algorithm, and evaluate the accuracy of the classification result. Experimental results show that the image quality after Gram-Schmidt fusion algorithm is the best, and the classification accuracy of Gram-Schmidt algorithm is the highest; Brovey fusion algorithm has good spectral fidelity for vegetation and water body,after changing the band combination, the classification accuracy of Brovey algorithm is obviously improved; the accuracy of PCA algorithm is the lowest among the three fusion algorithms.

Key words: image fusion, land use classification, object-oriented, random forest, accuracy evaluation

中图分类号: