[1] 唐钰涵. 一种基于局部地形复杂度指标的机载LiDAR地面点云数据抽稀方法[D]. 成都:西南交通大学, 2019. [2] JO H C, KIM J, LEE K, et al. Non-contact strain measurement for laterally loaded steel plate using LiDAR point cloud displacement data[J]. Sensors and Actuators A:Physical, 2018, 283:362-374. [3] RODRÍGUEZ-MORENO C, REINOSO-GORDO J F, RIVAS-LÓPEZ E, et al. From point cloud to BIM:an integrated workflow for documentation, research and modelling of architectural heritage[J]. Survey Review, 2018, 50(360):212-231. [4] COMBA L, BIGLIA A, RICAUDA AIMONINO D, et al. Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture[J]. Computers and Electronics in Agriculture, 2018, 155:84-95. [5] JI Chunyang, LI Ying, FAN Jiahao, et al. A novel simplification method for 3D geometric point cloud based on the importance of point[J]. IEEE Access, 2019, 7:129029-129042. [6] HUR S M, KIM H C, LEE S H. STL file generation with data reduction by the delaunay triangulation method in reverse engineering[J]. The International Journal of Advanced Manufacturing Technology, 2002, 19(9):669-678. [7] SUN Feng, CHOI Y K, YU Yizhou, et al. Medial meshes:a compact and accurate representation of medial axis transform[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(3):1278-1290. [8] GOSWAMI P, EROL F, MUKHI R, et al. An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees[J]. The Visual Computer, 2013, 29(1):69-83. [9] SONG Shanwei, LIU Jing, YIN Changqing. Data reduction for point cloud using octree coding[M]//Intelligent Computing Theories and Application. Cham:Springer International Publishing, 2017:376-383. [10] 李仁忠, 杨曼, 刘阳阳, 等. 一种散乱点云的均匀精简算法[J]. 光学学报, 2017, 37(7):97-105. [11] 姚顽强, 郑俊良, 陈鹏, 等. 八叉树索引的三维点云数据压缩算法[J]. 测绘科学, 2016, 41(7):18-22. [12] 杨建思. 一种四叉树与KD树结合的海量机载LiDAR数据组织管理方法[J]. 武汉大学学报(信息科学版), 2014, 39(8):918-922. [13] HAN Huiyan, HAN Xie, SUN Fusheng, et al. Point cloud simplification with preserved edge based on normal vector[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19):2157-2162. [14] 徐景中, 万幼川, 张圣望. LIDAR地面点云的简化方法研究[J]. 测绘信息与工程, 2008, 33(1):32-34. [15] 陈龙. 散乱点云特征提取和聚类精简技术研究[D]. 绵阳:西南科技大学, 2017. [16] WANG Lihui, CHEN Jing, YUAN Baozong. Simplified representation for 3D point cloud data[C]//Proceedings of the 10th IEEE International Conference on Signal Processing. Beijing:IEEE, 2010:1271-1274. [17] 宋敏峰, 贾东振, 郭俊文, 等. K-近邻长方体的点云特征提取压缩算法[J]. 测绘科学, 2019, 44(10):93-100. [18] 吴光荣. 保存特征的点云数据精简方法研究[D]. 赣州:江西理工大学, 2019. [19] 张一, 江刚武, 狄亚南, 等. 一种采用改进K-d树的无人机影像特征匹配搜索方法[J]. 测绘科学技术学报, 2015, 32(5):500-504. [20] 袁兴明. 变异系数赋权法确定GNSS系统硬件延迟[J]. 大地测量与地球动力学, 2019, 39(12):1287-1292. [21] 杨明军, 苏春梅, 康冰锋, 等. 平原地区机载激光雷达数据的抽稀算法分析[J]. 测绘通报, 2019(1):101-107. |