[1] 梁英男. 智能货柜场景下的商品识别算法的研究与系统设计[D]. 广州:华南理工大学, 2020. [2] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE, 2016:770-778. [3] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:7132-7141. [4] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu:IEEE, 2017:2261-2269. [5] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:4510-4520. [6] ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:6848-6856. [7] XIE Saining, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu:IEEE, 2017:5987-5995. [8] ZHANG Hang, WU Chongruo, ZHANG Zhongyue, et al. ResNeSt:split-attention networks[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).New Orleans:IEEE, 2022:2735-2745. [9] 张文强. 基于深度学习的商品检测和识别研究[D]. 成都:电子科技大学, 2019. [10] ZHAN Xunlin, WU Yangxin, DONG Xiao, et al. Product1M:towards weakly supervised instance-level product retrieval via cross-modal pretraining[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal:IEEE, 2021:11762-11771. [11] 李昊璇, 闫新艳. 基于深度残差收缩网络的商品图像识别[J]. 测试技术学报, 2021, 35(4):294-299. [12] ZENG Weiyu, WANG Tianlei, CAO Jiuwen, et al. Clustering-guided pairwise metric triplet loss for person reidentification[J]. IEEE Internet of Things Journal, 2022, 9(16):15150-15160. [13] KOMATSU R, GONSALVES T. Multi-CartoonGAN with conditional adaptive instance-layer normalization for conditional artistic face translation[J]. AI, 2022, 3(1):37-52. [14] ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu:IEEE, 2017:3652-3661. |