[1] MÜLLEROVÁ J,BRŮNA J,BARTALOŠ T,et al. Timing is important:unmanned aircraft vs. satellite imagery in plant invasion monitoring[J]. Frontiers in Plant Science,2017,8:887. [2] 高抒,杜永芬,谢文静,等. 苏沪浙闽海岸互花米草盐沼的环境-生态动力过程研究进展[J]. 中国科学(地球科学),2014,44(11):2339-2357. [3] 智超,吴文挺,苏华. 潮汐和植被物候影响下的潮间带湿地遥感提取[J]. 遥感学报,2022,26(2):373-385 [4] LIU Mingyue,LI Huiying,LI Lin,et al. Monitoring the invasion of spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary,China[J]. Remote Sensing,2017,9(6):539. [5] BRADLEY B A. Remote detection of invasive plants:a review of spectral,textural and phenological approaches[J]. Biological Invasions,2014,16(7):1411-1425. [6] WANG Jie. Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984-2010 through PALSAR and time series Landsat images[J]. Remote Sensing of Environment,2017,190:233-246. [7] LIU Jinxiu,HEISKANEN J,AYNEKULU E,et al. Land cover characterization in west sudanian savannas using seasonal features from annual landsat time series[J]. Remote Sensing,2016,8(5):365. [8] LIU Xiang,LIU Huiyu,DATTA P,et al. Mapping an invasive plant spartina alterniflora by combining an ensemble one-class classification algorithm with a phenological NDVI time-series analysis approach in middle coast of Jiangsu,China[J]. Remote Sensing,2020,12(24):4010. [9] TIAN Jinyan.Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion[J].Remote Sensing of Environment,2020,242:111745. [10] 刘瑞清,李加林,孙超,等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报,2021,76(7):1680-1692. [11] 赵欣怡,田波,牛莹,等. Sentinel-1时序后向散射特征的海岸带盐沼植被分类:以长江口为例[J]. 遥感学报,2022,26(4):672-682. [12] GULÁCSI A,KOVÁCS F.Sentinel-1-imagery-based high-resolution water cover detection on wetlands,aided by google earth engine[J]. Remote Sensing,2020,12(10):1614. [13] SLAGTER B. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data:a case study in the St. Lucia wetlands,South Africa[J]. International Journal of Applied Earth Observation and Geoinformation,2020,86:102009. [14] MAXWELL A E,WARNER T A,FANG Fang. Implementation of machine-learning classification in remote sensing:an applied review[J]. International Journal of Remote Sensing,2018,39(9):2784-2817. [15] LIU Mingyue,MAO Dehua,WANG Zongming,et al. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China:new observations from landsat OLI images[J]. Remote Sensing,2018,10(12):1933. [16] 董迪,曾纪胜,魏征,等. 联合星载光学和SAR影像的漳江口红树林与互花米草遥感监测[J]. 热带海洋学报,2020,39(2):107-117. [17] GORELICK Noel.Google earth engine:planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment,2017,202:18-27. [18] ZHOU Jie. Reconstruction of global MODIS NDVI time series:performance of Harmonic A Nalysis of Time Series (HANTS)[J]. Remote Sensing of Environment,2015,163:217-228. [19] TOLPEKIN V A,STEIN A. Quantification of the effects of land-cover-class spectral separability on the accuracy of Markov-random-field-based superresolution mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(9):3283-3297. [20] SCHMTDT K S, SKIDMCRE A K.Spectral discrimination of vegetation types in a coastal wetland[J]. Remote Sensing of Environment,2003,85(1):92-108. [21] HUANG C,DAVIS L S,TOWNSHEND J R G. An assessment of support vector machines for land cover classification[J]. International Journal of Remote Sensing,2002,23(4):725-749. [22] SHAO Yang. Comparison of support vector machine,neural network,and CART algorithms for the land-cover classification using limited training data points[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2012,70:78-87. [23] 宁晓刚,常文涛,王浩,等. 联合GEE与多源遥感数据的黑龙江流域沼泽湿地信息提取[J]. 遥感学报,2022,26(2):386-396. [24] 邓自发,安树青,智颖飙,等. 外来种互花米草入侵模式与爆发机制[J]. 生态学报,2006,26(8):2678-2686. |