测绘通报 ›› 2023, Vol. 0 ›› Issue (8): 57-62.doi: 10.13474/j.cnki.11-2246.2023.0232

• 学术研究 • 上一篇    下一篇

基于Sentinel-2和Landsat卫星时序数据的耕地撂荒识别

欧阳许童1,2, 张璇1,2, 李维庆1,2, 刘娟1,2, 刘卓圣1,2   

  1. 1. 自然资源部第三地理信息制图院, 四川 成都 610100;
    2. 自然资源部数字制图与国土信息应用重点实验室, 四川 成都 610100
  • 收稿日期:2022-11-28 发布日期:2023-09-01
  • 通讯作者: 张璇。E-mail:244037021@qq.com
  • 作者简介:欧阳许童(1995-),女,硕士,主要研究方向为自然资源遥感监测。E-mail:ivyforoy@gmail.com
  • 基金资助:
    四川省地理信息测绘局2022年新型基础测绘技术研究补助计划(川测发[2022]46号)

Abandoned land identification based on Sentinel-2 and Landsat satellite time series images

OUYANG Xutong1,2, ZHANG Xuan1,2, LI Weiqing1,2, LIU Juan1,2, LIU Zhuosheng1,2   

  1. 1. The Third Geoinformation Mapping Institute of Ministry of Natural Resources, Chengdu 610100, China;
    2. Ministry of Natural Resources Key Laboratory of Digital Cartography and Land Information Application, Chengdu 610100, China
  • Received:2022-11-28 Published:2023-09-01

摘要: 充足的粮食供应是当下经济发展和社会稳定的重要保障之一,撂荒作为耕地边际化的极端表现,对其开展监测对保障耕地数量和质量至关重要。本文以四川省南充市营山县为研究区域,通过GEE平台,使用Sentinel-2和Landsat 7、8数据构建时序数据集,计算NDVI、EVI、NDWI、BSI、MSI等指数,分别利用支持向量机和随机森林法提取耕地撂荒,总分类精度为73.76%,Kappa系数为0.68,针对耕地撂荒最佳提取效果, F1 得分为0.691 1。本文方法对山地丘陵地区耕地撂荒监测有较大的借鉴意义。

关键词: 耕地撂荒, 时间序列, Sentinel-2, Landsat, 支持向量机, 随机森林

Abstract: Adequate food supply is vital to economic development and social stability. With the marginalization of cultivated land, the monitoring of abandoned land is essential to ensure the quantity and quality of cultivated land. This paper takes Yingshan county, Nanchong city, Sichuan province as the research area. GEE platform, Sentinel-2 and Landsat 7、8 data are applied to build a time series dataset, and indices such as NDVI, EVI, NDWI, BSI and MSI are calculated. Machine learning algorithms, support vector machine and random forest are separately used to extract abandoned land, and the overall accuracy is 73.76%, with Kappa coefficients 0.68. The highest F1 score of abandoned land is 0.691 1. This paper develops an abandoned cultivated land identification method based on time series dataset, which can contribute to monitoring wasteland in hilly areas.

Key words: abandoned cultivated land, time series, Sentinel-2, Landsat, support machine vector, random forest

中图分类号: