[1] HE C Y,LIU Z F,WU J G,et al. Future global urban water scarcity and potential solutions[J]. Nature Communications,2021,12(1):4667. [2] DAI D,SUN M D,LÜ X B,et al. Comprehensive assessment of the water environment carrying capacity based on the spatial system dynamics model,a case study of Yongding River Basin in North China[J]. Journal of Cleaner Production,2022,344:131137. [3] 蔡竟芳,孙凯,张羽,等. 凤眼莲入侵强度和水深对沉水植物生长及种间关系的影响[J]. 环境科学学报,2022,42(1):36-46. [4] ALBRIGHT T P,MOORHOUSE T G,MCNABB T J. The rise and fall of Eichhornia crassipes in Lake Victoria and the Kagera River basin,1989-2001[J]. Journal of Aquatic Plant Management,2004,42(42):73-84. [5] VERMA R,SINGH S P,RAJ K G. Assessment of changes in water-hyacinth coverage of water bodies in northern part of Bangalore city using temporal remote sensing data[J]. Current Science,2003,84:795-804. [6] 蒋明,郭云开,朱佳明,等. 时序遥感影像滇池凤眼莲时空动态变化分析[J]. 遥感信息,2019,34(3):43-47. [7] 杨静学,陈亮雄,李伟添,等. 多源卫星遥感数据和水色遥感技术在水库水葫芦覆盖监察中的应用[J]. 农业与技术,2019,39(3):5-7. [8] 张覃雅基于Worldview影像的外来入侵植物提取方法对比及格局动态[D].北京:中国地质大学,2019. [9] 秦雁,陈亮雄,杨静学,等. 东莞市水葫芦分布遥感动态监测分析[J]. 广东水利水电,2020(7):11-15. [10] MUKARUGWIRO J A,NEWETE S W,ADAM E,et al. Mapping distribution of Eichhornia crassipes (Eichhornia crassipes) in Rwanda using multispectral remote sensing imagery[J]. African Journal of Aquatic Science,2019,44(4):339-348. [11] SINGH G,REYNOLDS C,BYRNE M,et al.A remote sensing method to monitor water,aquatic vegetation,and invasive eichhornia crassipes at national extents[J]. Remote Sensing,2020,12(24):4021. [12] 徐勇,郑志威,郭振东,等. 2000-2020年长江流域植被NDVI动态变化及影响因素探测[J].环境科学,2022,43(7):3730-3740. [13] 宁津生.测绘工程专业和测绘学[J]. 测绘工程,2000,9(2):70-74. [14] 李瑶,张立福,黄长平,等. 基于MODIS植被指数时间谱的太湖2001年-2013年蓝藻暴发监测[J]. 光谱学与光谱分析,2016,36(5):1406-1411. [15] 张圳,张弥,肖薇,等. 太湖水生植被NDVI的时空变化特征分析[J]. 遥感学报,2018,22(2):324-334. [16] 汪星,宫兆宁,井然,等. 基于连续统去除法的水生植物提取及其时空变化分析——以官厅水库库区为例[J]. 植物生态学报,2018,42(6):640-652. [17] 张妮娜,张珂,李运平,等. 中国南方典型湿润山区植被类型的无人机多光谱遥感机器学习分类研究[J]. 遥感技术与应用,2022,37(4):816-825. [18] NOI P T,KUCH V,LEHNERT L. Land cover classification using Google Earth Engine and random forest classifier-the role of image composition[J]. Remote Sensing,2020,12(15):2411. [19] PRATICÒ S,SOLANO F,DI FAZIO S,et al. Machine learning classification of Mediterranean forest habitats in Google Earth Engine based on seasonal Sentinel-2 time-series and input image composition optimisation[J]. Remote Sensing,2021,13(4):586. [20] YE N,JUSTIN M,XU C,et al. Improving neural network classification of indigenous forest in New Zealand with phenological features[J]. Journal of Environmental Management,2022,13(4):586. [21] MAUNG W S,SASAKI J. Assessing the natural recovery of mangroves after human disturbance using neural network classification and Sentinel-2 imagery in wunbaik mangrove forest,Myanmar[J]. Remote Sensing,2020,13(1):52. [22] ZHANG M L,QU H,XIE X R,et al. Supervised learning in spiking neural networks with noise-threshold[J]. Neurocomputing,2017,219:333-349. [23] LIANG X,ZHU L,HUANG D S. Multi-task ranking SVM for image cosegmentation[J]. Neurocomputing,2017,247:126-136. [24] CERVANTES J,GARCIA-LAMONT F,RODRÍGUEZ-MAZAHUA L,et al. A comprehensive survey on support vector machine classification:applications,challenges and trends[J]. Neurocomputing,2020,408:189-215. |