测绘通报 ›› 2024, Vol. 0 ›› Issue (1): 77-82.doi: 10.13474/j.cnki.11-2246.2024.0113

• 学术研究 • 上一篇    下一篇

基于双目深度筛选的ORB-SLAM3算法

符强1,2,3, 腾先云1,2,3, 纪元法1,2,3, 任风华4, 孔健明1,2,3   

  1. 1. 桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004;
    2. 桂林电子科技大学信息与通信学院, 广西 桂林 541004;
    3. 卫星导航与位置服务国家与地方联合工程研究中心, 广西 桂林 541004;
    4. 桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
  • 收稿日期:2023-04-26 出版日期:2024-01-25 发布日期:2024-01-30
  • 通讯作者: 纪元法。E-mail:1846403892@qq.com
  • 作者简介:符强(1976—),男,硕士,正高级实验师,主要研究方向为图像处理、卫星导航与定位。E-mail:2325950807@qq.com
  • 基金资助:
    广西科技厅项目(桂科AA20302022;桂科AB21196041;桂科AB22035074;桂科AD22080061);国家自然科学基金(62061010;62161007);广西八桂学者团队项目;广西高校中青年教师科研基础能力提升项目;(2022KY0181);桂林电子科技大学研究生教育创新计划(2021YCXS026)

ORB-SLAM3 algorithm based on binocular depth screening

FU Qiang1,2,3, TENG Xianyun1,2,3, JI Yuanfa1,2,3, REN Fenghua4, KONG Jianming1,2,3   

  1. 1. Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China;
    2. Information and Communicaiton Schnool, Guilin University of Electronic Technology, Guilin 541004, China;
    3. National & Local Joint Engineering Research Center of Satellite Navigation Positioning and Location Service, Guilin 541004, China;
    4. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
  • Received:2023-04-26 Online:2024-01-25 Published:2024-01-30

摘要: 针对ORB-SLAM3算法中特征点存在易丢失、精度低,进而导致双目在复杂场景下运动轨迹误差大的问题,本文设计了一种改进的ORB-SLAM3算法。首先,在ORB特征匹配算法中引入自适应角点检测技术,增加特征点的采集数量,并采用光流法跟踪图像特征,提高关键帧的创建成功率;其次,以特征点为中心,作区域搜索,提高实时性;然后,采用双向左右一致性检验筛选最优视差,应用Prosac算法去除误匹配点对;最后,结合深度信息对关键帧进行筛选,提高关键帧的质量,优化相机位姿。采用KITTI和EuRoc数据集进行了试验,验证了改进算法在绝对轨迹误差上具有良好的优化效果。

关键词: 双目视觉, ORB-SLAM3, 光流法, Prosac算法

Abstract: Aiming at the problem that feature points in ORB-SLAM3 algorithm are easily lost and have low accuracy, which in turn leads to large errors in motion trajectory of binoculars in complex scenes, this paper designs an improved ORB-SLAM3 algorithm. Firstly, the adaptive corner point detection technology is introduced in the ORB feature matching algorithm to increase the number of feature point acquisition. Secondly, the optical flow method is used to track the image features to improve the success rate of key frame creation. Then the region search is done with the feature points as the center to improve the real-time performance, the bi-directional left-right consistency test is used to screen the optimal parallax, the Prosac algorithm is applied to remove the mis-matched point pairs. Finally, the depth information is combined with the key frame. the depth information is combined with the key frame screening to improve the quality of key frames and optimize the camera pose. The improved algorithm has good robustness and positioning accuracy in absolute trajectory error.

Key words: binocular vision, ORB-SLAM3, optical flow method, Prosac algorithm

中图分类号: