[1] GAO J,LIU J,JI S P. A general deep learning based framework for 3D reconstruction from multi-view stereo satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2023(195):446-461. [2] 侯位昭,张欣海,吴士珂,等. 基于卫星影像立体像对数据的三维重建技术研究[J]. 中国电子科学研究院学报,2021,16(4): 369-373. [3] 张俊辉,艾海滨,王庆栋,等. 高分辨率光学卫星影像全球重点区域三维建模方法: 以迪拜市为例[J]. 测绘通报,2020(7): 22-28. [4] HIRSCHMVLLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Trans Pattern Anal Mach Intell,2008,30(2): 328-341. [5] 季顺平,罗冲,刘瑾. 基于深度学习的立体影像密集匹配方法综述[J]. 武汉大学学报(信息科学版),2021,46(2): 193-202. [6] 康俊华. 基于全卷积神经网络的端到端立体密集匹配研究[J]. 测绘学报,2022,51(5): 785. [7] ŽBONTAR J,LECUN Y. Stereo matching by training a convolutional neural network to compare image patches [J]. Journal of Machine Learning Research,2016,17(1): 2287-2318. [8] MAYER N,ILG E,HÄUSSERP,et al. A large dataset to train convolutional networks for disparity,optical flow,and scene flow estimation [C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016: 4040-4048. [9] CHANG J,CHEN Y,CHIU W. Pyramid stereo matching network[C]// Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Utah:IEEE,2018: 5410-5418. [10] GAO Y,XU J,LIN S,et al. GC-Net: non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).Seoul:IEEE,2019. [11] HE S,LI S,JIANG S,et al. HMSM-Net: hierarchical multi-scale matching network for disparity estimation of high-resolution satellite stereo images[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2022,188:314-330. [12] BOSCH M,FOSTER K,CHRISTIE G,et al. Semantic stereo for incidental satellite images[C]// Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). [S.l.]:IEEE,2019: 1524-1532. [13] XU G,CHENG J,GUO P,et al. Attention concatenation volume for accurate and efficient stereo matching[C]// Proceedings of 2022 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).New Orleans:IEEE,2022: 12981-12990. [14] YANG F,SUN Q,JIN H,et al. Superpixel segmentation with fully convolutional networks[C]// Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.]:IEEE,2020: 13964-13973. [15] GUIRGUIS K,HENDAWY A,ESKANDAR G,et al. CFA: constraint-based finetuning approach for generalized few-shot object detection [C]// Proceedings of 2022 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).New Orleans:IEEE,2022: 4039-4049. [16] LIU Biyang,YU Huimin,LONG Yangqi. Local similarity pattern and cost self-reassembling for deep stereo matching networks[C]//Proceedings of 2022 AAAI Conference on Artificial Intelligence. [S.l.]:AAAI,2022. [17] GUOX,YANG K,YANG W,et al. Group-wise correlation stereo network[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). CA:IEEE,2019: 3273-3282. |