测绘通报 ›› 2024, Vol. 0 ›› Issue (2): 170-177.doi: 10.13474/j.cnki.11-2246.2024.0232

• 测绘地理信息技术应用案例 • 上一篇    下一篇

改进Mask RCNN的盾构隧道渗漏水检测方法

王健1,2, 郑理科1, 吴斌杰3, 齐智宇1   

  1. 1. 山东科技大学测绘与空间信息学院, 山东 青岛 266590;
    2. 青岛市北斗导航空间信息技术重点 实验室, 山东 青岛 266590;
    3. 锡林郭勒盟山金阿尔哈达矿业有限公司, 内蒙古 锡林郭勒 026300
  • 收稿日期:2023-11-06 出版日期:2024-02-25 发布日期:2024-03-12
  • 作者简介:王健(1974—),女,博士,副教授,研究方向为点云数据处理与分析。E-mail:wangj@sdust.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2023MD027);国家重点研发计划(2022YFB3903501)

Improved Mask RCNN method for shield tunnel leakage detection

WANG Jian1,2, ZHENG Like1, WU Binjie3, QI Zhiyu1   

  1. 1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China;
    2. Qingdao Key Laboratory of Beidou Navigation and Intelligent Spatial Information Technology Application, Qingdao 266590, China;
    3. Xilingol League Shandong Gold Alhada Mining Co., Ltd., Xilingol 026300, China
  • Received:2023-11-06 Online:2024-02-25 Published:2024-03-12

摘要: 渗漏水是盾构隧道结构存在潜在损伤或缺陷的重要表征,快速、准确检测出渗漏水位置,对隧道安全运营和维护具有重要意义。现有的方法大多采用光学影像对隧道渗漏水进行检测,受隧道内空间和光线条件限制,难以获得高质量病害图片。因此,本文提出了一种基于激光点云数据与改进Mask RCNN相结合的渗漏水检测方法。首先对激光点云反射强度进行修正;然后生成灰度图像并建立渗漏水病害数据集;最后在Mask RCNN算法中引入空洞卷积和变形卷积,实现了隧道渗漏水病害的快速检测。利用某地铁采集的数据进行验证,结果表明,本文提出的改进Mask RCNN算法相较于原始算法和FCN算法检测精度均有明显提升,在盾构隧道渗漏水识别方面性能表现较好。

关键词: 盾构隧道, 点云, 反射强度修正, Mask RCNN, 渗漏水检测

Abstract: Water leakage is an important characterization of the potential damage or defects of the shield tunnel structure. Rapid and accurate detection of the tunnel leakage site is of great significance to the safe operation and maintenance of the tunnel. However, most of the existing methods use optical images to detect the tunnel water leakage, but due to the tunnel space limitations and light conditions, it is difficult to obtain high-quality disease pictures. In this regard, a water leakage detection method based on terrestrial laser scanning point cloud and improved Mask RCNN is proposed. Firstly, the laser point cloud reflection intensity is corrected, and then the gray scale image is generated and the water leakage disease data set is established. Finally, the atrous convolution and deformation convolution are introduced in the Mask RCNN algorithm to realize the rapid detection of tunnel water leakage disease. The data collected in metro are used for verification. Experimental results show that, compared to the original algorithm and FCN algorithm, the detection accuracy of the proposed improved Mask RCNN algorithm is significantly improved, and it has a good performance in water leakage identification in shield tunnel.

Key words: shield tunnel, point cloud, reflection intensity correction, Mask RCNN, water leakage detection

中图分类号: