测绘通报 ›› 2024, Vol. 0 ›› Issue (3): 123-126,150.doi: 10.13474/j.cnki.11-2246.2024.0321

• 技术交流 • 上一篇    下一篇

基于多源高分辨率遥感影像的典型自然资源要素提取

马锦山1, 贾国焕1, 张赛2, 张炯1   

  1. 1. 西宁市国土勘测规划研究院有限公司, 青海 西宁 810000;
    2. 中科北纬(北京)科技有限公司, 北京 100192
  • 收稿日期:2024-01-05 发布日期:2024-04-08
  • 作者简介:马锦山(1992—),男,工程师,主要研究方向为卫星遥感影像解译算法。E-mail:1012774979@qq.com

Extraction of typical natural resource elements based on multi-source high-resolution remote sensing images

MA Jinshan1, JIA Guohuan1, ZHANG Sai2, ZHANG Jiong1   

  1. 1. Xining Land Survey and Planning Research Institute Co., Ltd., Xining 810000, China;
    2. Zhongke Beiwei (Beijing) Technology Co., Ltd., Beijing 100192, China
  • Received:2024-01-05 Published:2024-04-08

摘要: 利用高分辨率遥感数据具有高空间分辨率的特性,本文以青海省西宁市0.3和1m多源高分辨遥感影像为数据源,基于卷积神经网络深度学习算法进行典型自然资源要素提取。结果表明,0.3m遥感影像提取耕地、林地准确率均在85%以上,召回率在89%以上;1m遥感影像提取耕地林地准确率在90%以上,召回率在91%以上,研究成果可用于西宁市自然资源典型要素智能提取。

关键词: 高分辨率, 卷积神经网络, 深度学习, 遥感解译

Abstract: Using high-resolution remote sensing data with high spatial resolution characteristics, typical natural resource elements are extracted based on traditional convolutional neural network deep learning algorithms using multi-source high-resolution remote sensing images of 0.3 and 1m in Xining, Qinghai province as data sources. The results show that the accuracy of extracting farmland and forest land from 0.3m remote sensing images is over 85%, with a recall rate of over 89%. The accuracy of extracting farmland and forest land from 1m remote sensing images is over 90%, with a recall rate of over 91%. The research results can be used for intelligent extraction of typical elements of natural resources in Xining.

Key words: high-resolution, convolutional neural networks, deep learning, remote sensing interpretation

中图分类号: