测绘通报 ›› 2024, Vol. 0 ›› Issue (4): 41-47.doi: 10.13474/j.cnki.11-2246.2024.0408

• 学术研究 • 上一篇    

城市群花粉过敏网络关注度及影响因素研究

王玥, 颜梅春, 徐嘉慧   

  1. 河海大学地理与遥感学院, 江苏 南京 211100
  • 收稿日期:2023-10-19 发布日期:2024-04-29
  • 通讯作者: 颜梅春。E-mail:yanmeichun@hhu.edu.cn
  • 作者简介:王玥(1999—),女,硕士生,主要研究方向为遥感与地理信息应用。E-mail:3325395040@qq.com
  • 基金资助:
    国家自然科学基金(42171200)

A study on the pollen allergy network attention and influencing factors in urban agglomerations

WANG Yue, YAN Meichun, XU Jiahui   

  1. College of Geography and Remote Sensing, Hohai University, Nanjing 211100, China
  • Received:2023-10-19 Published:2024-04-29

摘要: 研究花粉过敏网络关注度时空特征及影响因素有利于掌握相关信息,服务民生。本文结合百度指数、气象、遥感数据,分析8个城市群2017—2021年花粉过敏网络关注度时空特征与影响因素,并采用随机森林、反向传播神经网络模型进行模拟。结果表明:①时空特征:关注度每年高峰期在春季(4—5月);人口聚集的城市最高,在空间上聚集,京津冀、山东半岛、长三角、珠三角城市群为热点区。②与影响因素关系:有效范围内,温度升高、短时雷暴雨、空气质量差、光合有效辐射吸收分量升高、夜间灯光强,关注度高;高湿、高风速、大雨、久雨,关注度低;夜间灯光相关性最高。③城市群方面:北方城市群的温度、沿海城市群的湿度、地形起伏大城市群的风速、南方城市群的降水、珠三角和长三角城市群的空气质量指数、珠三角和京津冀城市群的光合有效辐射吸收分量重要性大,夜间灯光都不可替代。④随机森林和反向传播神经网络适用于模拟关注度,各城市群R2均在0.64~0.92之间,RMSE、MAE均在1以下,反向传播神经网络比随机森林模拟效果更好。成渝城市群2个模型拟合度均优,其次是京津冀、珠三角和长江中游城市群。本文的方法和结果可为花粉过敏相关工作提供参考。

关键词: 花粉过敏, 百度指数, 城市群, 夜间灯光, 光合有效辐射吸收分量, 机器学习模型

Abstract: Studying the spatio-temporal characteristics and influencing factors of pollen allergy network attention is beneficial for mastering relevant information and serving people's livelihoods. This paper combines Baidu index,meteorological,and remote sensing data to analyze the spatiotemporal characteristics and influencing factors of pollen allergy network attention in eight urban agglomerations from 2017 to 2021. Random forest and back propagation neural network models are used for simulation. The results show that: ①In terms of spatiotemporal characteristics,the annual peak of attention is in spring (April and May). Cities with concentrated populations receive the highest attention. The city is spatially concentrated,with the Beijing-Tianjin-Hebei,Shandong Peninsula,Yangtze River Delta,and Pearl River Delta urban agglomerations as hot spots. ②In terms of relationship with influencing factors,within the effective range,with the increase of temperature,short term thunderstorm rainstorm,poor air quality,increased fraction of absorbed photosynthetically active radiation,and strong nighttime light,attention increases,and with high humidity,high wind speed,heavy rain,and prolonged rain,attention decreases. Attention has the highest correlation with nighttime light.③In terms of urban agglomerations,the temperature of the northern urban agglomerations,the humidity of the coastal urban agglomerations,the wind speed of the urban agglomerations with large undulating terrain,the precipitation of the southern urban agglomerations,the air quality index of the Pearl River Delta and the Yangtze River Delta and the fraction of absorbed photosynthetically active radiation of the Pearl River Delta and the Beijing-Tianjin-Hebei urban agglomerations are of great importance,and the nighttime light in each urban agglomeration is irreplaceable. ④Random forest and back propagation neural network are suitable for simulating attention,with R2 ranging from 0.64 to 0.92 for each urban agglomeration,and RMSE and MAE below 1. Back propagation neural network has better simulation effects than random forest. The fit of both models in the Chengdu-Chongqing urban agglomeration is excellent,followed by the Beijing-Tianjin-Hebei,Pearl River Delta,and the middle reaches of the Yangtze River urban agglomeration. The methods and results of this paper can provide reference for work related to pollen allergy.

Key words: pollen allergy, Baidu index, urban agglomerations, nighttime light, fraction of absorbed photosynthetically active radiation, machine learning models

中图分类号: