测绘通报 ›› 2024, Vol. 0 ›› Issue (7): 12-16.doi: 10.13474/j.cnki.11-2246.2024.0703

• 导航定位研究 • 上一篇    下一篇

一种融合5G CSI和地磁的集成学习定位方法

程振豪, 赵冬青, 郭文卓, 赖路广, 李林阳   

  1. 信息工程大学地理空间信息学院, 河南 郑州 450001
  • 收稿日期:2023-11-07 发布日期:2024-08-02
  • 通讯作者: 赵冬青。E-mail:dongqing.zhao@hotmail.com
  • 作者简介:程振豪(1996—),男,硕士生,主要研究方向为室内定位。E-mail:13283948378@163.com
  • 基金资助:
    国家自然科学基金(4210403;41774037)

An integrated learning localization method fusing 5G CSI and geomagnetic data

CHENG Zhenhao, ZHAO Dongqing, GUO Wenzhuo, LAI Luguang, LI Linyang   

  1. School of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
  • Received:2023-11-07 Published:2024-08-02

摘要: 针对深度学习算法在多传感器融合定位中容易出现的局部收敛、异质融合性能不佳等问题,本文提出了一种集成双向长短期记忆网络(BiLSTM)和注意力机制的多输入卷积神经网络(CNN)的室内定位算法。该算法首先对5G信道状态信息(CSI) 和地磁数据分别进行预处理;然后各自基于独立的分支网络进行离线训练,同时提取指纹数据的空间特征和时序特征,追加注意力机制层;最后在全连接层实现了异质传感器数据的融合定位。在会议室和教学楼大厅的试验结果表明,平均定位误差分别为0.95和1.84 m,相比误差反向传播网络(BPNN)分别提高了48.9%和42.7%,定位精度和系统稳定性均大幅提升。

关键词: 室内定位, 卷积神经网络(CNN), 双向长短期记忆神经网络(BiLSTM), 注意力机制, 信道状态信息(CSI)

Abstract: A multi-input convolutional neural network (CNN) incorporating bidirectional long short-term memory neural network(BiLSTM) and attention mechanism is presented to address the issues of local convergence and poor heterogeneous fusion performance of deep learning algorithms in multi-sensor fusion positioning. Firstly, 5G channel state information (CSI) and geomagnetic data arepreprocessed separately. Then each of them is trained offline based on an independent branch network, and the spatial and temporal features of the fingerprint data are extracted at the sametime to append the attention mechanismlayer. Finally, the fusion of heterogeneoussensor data for localization is achieved at the fully connected layer.The experimental results in the conference room and the teaching building hall show that the average positioning error is 0.95 and 1.84 m respectively, which is 48.9% and 42.7% higher than that of the error backpropagation network(BPNN), and that positioning accuracy and system stability are both greatly improved.

Key words: indoor positioning, convolutional neural network(CNN), bidirectional long short-term memory neural network(BiLSTM), attention mechanism, channel state information(CSI)

中图分类号: