[1] 余贻鑫.智能电网实施的紧迫性和长期性[J].电力系统保护与控制, 2019, 47(17): 1-5. [2] 彭向阳, 钱金菊, 麦晓明, 等.大型无人直升机电力线路全自动巡检技术及应用[J].南方电网技术, 2016, 10(2): 24-31. [3] 陈竹安, 邹梓龙, 徐志芳, 等.复杂背景下航拍图像的电力线自动提取算法[J].测绘通报, 2022(4): 37-43. [4] 赵浩程, 雷俊峰, 王先培, 等.背景复杂下航拍图像的电力线识别算法[J].测绘通报, 2019(7): 28-32. [5] LARRAURI J I, SORROSAL G, GONZALEZ M.Automatic system for overhead power line inspection using an Unmanned Aerial Vehicle—RELIFO project[C]//Proceedings of 2013 International Conference on Unmanned Aircraft Systems.Atlanta, GA, USA: IEEE, 2013. [6] 王万国, 张晶晶, 韩军, 等.基于无人机图像的输电线断股与异物缺陷检测方法[J].计算机应用, 2015, 35(8): 2404-2408. [7] 林刚, 王波, 彭辉, 等.基于改进Faster-RCNN的输电线巡检图像多目标检测及定位[J].电力自动化设备, 2019, 39(5): 213-218. [8] 黄芹芹, 董洁, 陈玥, 等.一种改进SSD算法的输电线路目标检测方法[J].电工电气, 2021(6): 51-55. [9] TU Renwei, ZHU Zhongjie, BAI Yongqiang, et al.Key parts of transmission line detection using improved YOLOv3[J].The International Arab Journal of Information Technology, 2021, 18(6):35-39. [10] 颜宏文, 陈金鑫.基于改进YOLOv3的绝缘子串定位与状态识别方法[J].高电压技术, 2020, 46(2): 423-432. [11] 汤浩威, 姚军财, 姚聪颖, 等.基于改进YOLOv5的输电线路多目标检测[J].计算机与现代化, 2023(2): 78-82. [12] 白洁音, 赵瑞, 谷丰强, 等.多目标检测和故障识别图像处理方法[J].高电压技术, 2019, 45(11): 3504-3511. [13] CHEN Haipeng, HE Zhentao, SHI Bowen, et al.Research on recognition method of electrical components based on YOLOV3[J].IEEE Access, 2019, 7: 157818-157829. [14] WANG Xin, HE Ning, HONG Chen, et al.Improved YOLOX-X based UAV aerial photography object detection algorithm[J].Image and Vision Computing, 2023, 135: 104697. [15] HOU Qibin, ZHOU Daquan, FENG Jiashi.Coordinate attention for efficient mobile network design[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville: IEEE, 2021. [16] WANG Ruoxi, SHIVANNA R, CHENG D, et al.DCN V2: improved deep & cross network and practical lessons for web-scale learning to rank systems[C]//Proceedings of the Web Conference 2021.Ljubljana:ACM Press, 2021: 1785-1797. [17] LI H L, LI J, WEI H B, et al., Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles[J].Computer Vision and Pattern Recognition, 2022(VI):02424. [18] DAI Jifeng, QI Haozhi, XIONG Yuwen, et al.Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Venice: IEEE, 2017. [19] 毕鹏程, 罗健欣, 陈卫卫.轻量化卷积神经网络技术研究[J].计算机工程与应用, 2019, 55(16): 25-35. |